期刊文献+

基于独立分量分析和RBF神经网络的气液两相流流型识别 被引量:16

Flow regime identification of gas/liquid two-phase flow based ICA and RBF neural networks
下载PDF
导出
摘要 引言气液两相流广泛存在于工程和自然界中[1]。而流型的识别一直是两相流研究中尚未解决的问题。传统的流型识别方法一般分为两类:一是直接法, It is the key issue of two-phase flow research to identify the flow type. The variability of two- phase flow medium leads to diversity and randomness of two-phase patterns, so it is difficult to identify the flow pattern effectively. Thinks to independent component analysis (ICA) fixed point algorithm, featuring fast convergence speed and no need of the introduction of some iterative process parameters, such as regulated step, in this paper the method named ICA-RBF was developed, which included two steps.- first, applying the fixed point algorithm of negative entropy to extract convection type characteristic parameters~ second, identifying the parameters by radial basis function (RBF) neural network. Moreover, other two means, i.e. wavelet packet decomposition and singular value decomposition were introduced to extract feature from the same set of data. Through experimental comparison, it was concluded that ICA RBF had better recognition results as well as simpler inspection process steps, which could reduce a lot of man-made errors and obtain more accurate and convincing result.
出处 《化工学报》 EI CAS CSCD 北大核心 2012年第3期796-799,共4页 CIESC Journal
基金 国家自然科学基金项目(50976018) 吉林省自然科学基金项目(20101562)~~
关键词 流型识别 固定点算法 RBF神经网络 flow pattern identification fixed point algorithm RBF neural network
  • 相关文献

参考文献17

  • 1Zhou Yunlong(周云龙),Sun Bin(孙斌),Chen Fei(陈飞).The Intelligent Identification Theory and Method of Two phase Flow Model(气液两相流型智能识别理论及方法)[M].Beijing:Science Press,2007.
  • 2BAI BoFeng,ZHANG ShaoJun,ZHAO Liang,ZHANG XiMin,GUO LieJin.Online recognition of the multiphase flow regime[J].Science China(Technological Sciences),2008,51(8):1186-1194. 被引量:2
  • 3Kokal S L, Stanislav J F. An experimental study of two- phase flow in slightly inclined pipes-I [J ]. Chemical Engineering Science, 1989, 44 (3): 665-679.
  • 4Taitel Y, Dulker A E. A model for predicting flow regime transitions in horizontal and near horizontal flow [J]. Chinese Journal of Chemical Engineering, 1976, 22 (13) : 47-55.
  • 5Ewing M E, Weinandy J J. Observations of two phase flow patterns in a horizontal circular channel[J]. Heat Transfer Engineering, 1999, 20 (1) : 76-85.
  • 6Baker O. Simultaneous flow of oil and gas [J]. Oil Gas Journal, 1954, 26 (7): 185-195.
  • 7Zhou Yunlong(周云龙),Chen Tingkuan(陈听宽),Chen Xuejun(陈学俊).A design procedure of steam generator with multistart helical tubes [J]. Nuclear Power Engineering, 1992, 13 (3): 1-8.
  • 8Jutten C, Herault J. Blind separation of sources ( I ) : An adaptive algorithmbased on neuromimatic architecture [J]. Signal Processing, 1991, 24 (1) : 1-10.
  • 9Comon P. Independent component analysis a new concept [J]. Signal Processing, 1994, 36 (3): 287-314.
  • 10Bell A J, Sejnowski T J. An information maximization approach to blind separation and blind deconvolution [J]. Neural Computation, 1995, 7 : 1129-1159.

二级参考文献26

  • 1杨钢,王玉涛,陆增喜,王师.多传感器数据融合技术在多相流参数测量中的应用[J].仪表技术与传感器,2005(11):51-53. 被引量:4
  • 2Comon P. Independent Component Analysis, a New Concept[J]. Signal Processing, 1994, 36(3) : 287-314.
  • 3Yang H H, Amari S I. Adaptive On-line Learning Algorithms for Blind Separation: Maximum Entropy and Minimum Mutual Information[J]. Neural Computations, 1997, 9(8): 1457-1482.
  • 4Amari S I. Natural Gradient Works Efficiently in Learning[J]. Neural Computations, 1998, 10(2) : 251-276.
  • 5Cardoso J F, Laheld B. Equivariant Adaptive Source Separation[J]. IEEE Trans on Signal Processing, 1996, 44(12): 3017-3030.
  • 6Leen T W, Girolami M, Sejnowski T J. Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Sub-Gaussian and Super-Gaussian Sources[J]. Neural Computations, 1999, 11(3): 409-433.
  • 7Choi S, Cichocki A, Amari S I. Flexible Independent Component Analysis[J]. Journal of VLSI Signed Processing, 2000, 26(1): 25-38.
  • 8Cruces-Alvarez S, Cichocki A, Castedo-Ribas L. An Iterative Inversion Approach to Blind Source Separation[J]. IEEE Trans on Neural Networks, 2000, 11(6): 1423-1437.
  • 9Amari S I, Cardoso J F. Blind Source Separadon--Semiparametric Statistical Approach[J]. IEEE Tram on Signal Processing, 1997, 45(11): 2692-2697.
  • 10Douglas S C, Cichocki A. Adaptive Step-slze Techniques for Decorrelation and Blind Source Separation[ A]. Proc 32nd Asilomar Conf on Signals, Systems and Computers[C]. Pacific Grove, CA: [s.n.], 1998. 1191-1195.

共引文献15

同被引文献191

引证文献16

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部