期刊文献+

小世界网络V.S.均匀混合网络中的SIRS型传染病模型 被引量:4

Comparison of SIRS Epidemic Model in Small-world Network and in Uniformly Mixed World
下载PDF
导出
摘要 在现实复杂情形下(包含非线性传染率、有隔离措施、群外个体迁入、生育与死亡以及疾病可水平和垂直传播等),比较研究小世界网络中的SIRS型传染病模型与均匀混合SIRS型传染病模型的疾病动态传播行为,以及相同疾病控制策略在两种传染病模型上的效果。数值仿真研究发现:1)动态行为特征仅与模型参数有关的均匀混合SIRS型传染病模型不能准确刻画小世界网络中的传染病传播行为。2)源于均匀混合SIRS型传染病模型的控制策略(如强化隔离染病个体、限制易感群体迁入、提高染病个体死亡率以及控制疾病垂直传播等)适用于控制小世界网络中的传染病,但效果有显著差异。3)小世界网络中的SIRS型传染病的控制策略中,存在一个最佳的染病个体死亡率阈值。 The dynamic behaviors and performances of control strategies of SIRS epidemic model in small-world and in uniformly mixed world were investigated and compared in details,under such real complex circumstances that the transmission rate of disease is non-linear;quarantine measures were partially taken for infectious individuals;immigrations,fertility and death of individuals were permitted;and finally diseases could be both directly and vertically transmitted.Numerical simulations researches find that: 1) The SIRS epidemic model in uniformly mixed world whose dynamic behavior is fully determined by the model's parameters,cannot characterize the SIRS epidemic model in small-world.2) Those control strategies derived from SIRS epidemic model in uniformly mixed world,such as quarantining infectious individuals,restricting immigrants,raising death rate of the infectious and controlling vertical transmissions,are suitable for controlling the SIRS epidemic in small-world despite of their significantly different effects.3) There exists an optimal death rate of the infectious for controlling the epidemic in small world.
出处 《系统仿真学报》 CAS CSCD 北大核心 2012年第3期669-676,共8页 Journal of System Simulation
基金 国家自然科学基金(70801019 71171061) 广东省自然科学基金(S2011010004970)
关键词 SIRS型传染病模型 小世界网络 数值仿真 疾病控制 死亡率阈值 树生长算法 SIRS epidemic model small-world network numerical simulation disease control threshold of death rate algorithm of tree growing
  • 相关文献

参考文献13

  • 1Hethcote H W. The mathematics of infectious disease [J]. SIAM Review (S0036-1445), 2000, 42(2): 599-653.
  • 2Mei Song, Wanbiao Ma, Yastthiro Takeuchi. Permanence of a delayed SIR epidemic model with density dependent birth rate [J]. Journal of Computational and Applied Mathematics (S0377-0427), 2007, 201 (2) 389-394.
  • 3Liljeros F, Edling CR, Amaral LAN, et al. The web of human sexual contacts [J]. Nature (S0028-0836), 2001, 411(6840): 907-908.
  • 4Watts D J, Strogatz S H. Collective dynamics of 'small-world' networks [J]. Nature (S0028-0836), 1998, 393(6684): 440-442.
  • 5May R M, Lloyd A L. Infectious dynamics on scale-free networks [J]. Phys Rev E (S1063-651X), 2001, 64(6): 066112.1-066112.4.
  • 6Lloyd A L, May R M. How viruses spread among computers and people [J]. Science (S0036-8075), 2001, 292(5520): 1316-1317.
  • 7Pastor-Satorras R, Vespignani A. Epidemic spreading in scale free networks [J]. Phys Rev Lett (S0031-9007), 2001, 86(14): 3200-3203.
  • 8Eguiluz V M, Klemm K. Epidemic threshold in structured scale-free networks [J]. Phys Rev Lett (S0031-9007), 2002, 89(10): 108701-1087 04.
  • 9Guirong Jiang, Qigui Yang. Bifurcation analysis in an SIR epidemic model with birth pulse and pulse vaccination [J]. Applied Mathematics and Computation (S0096-3003), 2009, 215(3): 1035-1046.
  • 10Franceschetti A, Pugliese A. Threshold behavior of a SIR epidemic model with age structure and immigration [J]. Journal of Mathematical Biology (S0303 -6812), 2008, 57( 1): 1-27.

二级参考文献18

  • 1石磊,俞军,姚洪兴.具有常数迁入率和非线性传染率βI^pS^q的SI模型分析[J].高校应用数学学报(A辑),2008,23(1):7-12. 被引量:2
  • 2李建全,王峰,马知恩.一类带有隔离的传染病模型的全局分析[J].工程数学学报,2005,22(1):20-24. 被引量:26
  • 3杨建雅,张凤琴.一类具有垂直传染的SIR传染病模型[J].生物数学学报,2006,21(3):341-344. 被引量:22
  • 4Wu Lih-Ing, Feng Zhilan. Homoclinic bifurcation in an SIQR model for childhood diseases[J]. Journal of Differential Equations, 2000, 168 : 150-- 167.
  • 5Herbert Hethcote, Ma Zhien, Liao Shengbing. Effects of quarantine in six endemic models for infectious diseases [J]. MathBiosci, 2002, 180: 141--160.
  • 6马知恩,周义仓.常微分方程定性和稳定性方法[M].北京:科学出版社,2004.
  • 7Hethcote H W. The mathematics of infectious disease [J]. SIAM Review (S0036-1445), 2000, 42(2): 599-653.
  • 8Li J, Ma Z. Qualitative analyses of SIS epidemic model with vaccination and varying total population size [J]. Mathematical and computer modeling (S0895-7177), 2002, 35(11-12): 1235-1243.
  • 9Mei Song, Wanbiao Ma, Yastthiro Takeuchi. Permanence of a delayed SIR epidemic model with density dependent birth rate [J]. Journal of Computational and Applied Mathematics (S0377-0427), 2007, 201(2) 389-394.
  • 10Guirong Jiang, Qigui Yang. Bifurcation analysis in an SIR epidemic model with birth pulse and purse vaccination [J]. Applied Mathematics and Computation (S0096-3003), 2009, 215(3): 1035-1046.

共引文献13

同被引文献52

  • 1王议锋,田一,杨倩,尚寿亭.非典数学模型的建立与分析[J].工程数学学报,2003,20(7):45-52. 被引量:13
  • 2赵楠楠,谢文艺,魏诚.SARS传播的数学模型[J].大连海事大学学报,2005,31(1):110-112. 被引量:4
  • 3李光正,史定华.复杂网络上SIRS类疾病传播行为分析[J].自然科学进展,2006,16(4):508-512. 被引量:45
  • 4余雷,薛惠锋,李刚.传染病传播模型研究[J].计算机仿真,2007,24(4):57-60. 被引量:13
  • 5Yongzehn Pei, Shaoying Liu, Changguo Li, Lansun Chen. The dy- namics of an impulsive delay SI model with variable coefficients [J]. Applied Mathematical Modelling, 33, 2009:2766-2776.
  • 6Yi Wang, Zhen Jin, Zimo Yang, Zi-Ke Zhang, Tao Zhou, Gui- Quan Sun. Global analysis of an SIS model with an infective vector on complex networks[ J ]. Nonlinear Analysis: RealWorld Applica- tions, 13, 2012:543 - 557.
  • 7Hongjing Shi, Zhisheng Duan, Guangrong Chen. An SIS model with infective medium on complex networks [ J ]. Physica A, 387, 2008:2133-2144.
  • 8Xun Zhang, Xianning Liu. Backward bifurcation and global dy- namics of an SIS epidemic model with general incidence rate and treatment [ J ]. Nonlinear Analysis, 10, 2009:565 - 575.
  • 9Mina Youssef, Caterina Scoglio. An individual-based approach to SIR epidemics in contact networks[ J]. Journal of Theoretical Biol- ogy, 283, 2011:136 - 144.
  • 10Gang Huang, Xianning Liu, Yasuhiro Takeuchi. Lyapunov func- tions and global stability for age-structured HIV infection model [J]. SIAM J. Appl. Math, 71, 2012: 25-38.

引证文献4

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部