期刊文献+

复杂航空电子装备故障诊断规则提取 被引量:3

Extracting Diagnosis Rules of Complicated Avionics Under Condition of Small-Sample
下载PDF
导出
摘要 针对复杂航空电子装备故障样本不足的问题,为简化测试过程、提高故障诊断效率,提出了一种基于粗糙集的故障诊断规则提取方法;该方法构建了故障诊断决策信息系统,通过构造故障诊断决策信息系统的决策辨识矩阵和决策辨识函数,计算测试参数集的所有约简,从而提取故障诊断规则;以某型雷达系统为例,采用上述方法进行规则提取,将故障诊断所需测试参数从9个约简为3个;研究结果表明,该方法能在故障样本较少的条件下有效约简测试参数集,提取故障诊断规则,有利于简化测试过程,提高诊断效率。 With the problem of lacking fault samples of complicated avionics,in order to simplify test process and improve diagnosis efficiency,a method for extracting diagnosis rules based on rough set was promoted.A fault diagnosis decision-making information system was constructed to calculate all reductions of test-parameter-set by building decision-making distinguishing matrix and decision-making distinguishing functions of the fault diagnosis information system,so that the fault diagnosis rules can be extracted.For example,the method for extracting diagnosis rules was used in the diagnosis of some radar system,with the result that 9 test parameters used for diagnosis were reduced to 3.The result of the study shows that the method can efficiently reduce the test-parameter-set and extract fault diagnosis rules under the condition of small-sample.And it is helpful for simplifying test process and improving the diagnosis ability.
出处 《计算机测量与控制》 CSCD 北大核心 2012年第2期294-296,共3页 Computer Measurement &Control
基金 国家部委基金资助项目
关键词 小样本 粗糙集 故障诊断 复杂航空电子装备 small-sample rough set fault diagnosis complicated avionics
  • 相关文献

参考文献11

二级参考文献41

  • 1邢敬华,赵新泽,严新平.基于粗集理论的柴油机典型故障的磨粒识别[J].内燃机学报,2005,23(1):92-95. 被引量:2
  • 2徐荣红,孙金标.基于神经网络和专家系统的电传操纵系统故障诊断[J].航空学报,2005,26(2):195-198. 被引量:4
  • 3栗然,黎静华,苏立军.基于粗糙集的改进约简算法和决策树的电网故障诊断模型[J].继电器,2005,33(18):1-5. 被引量:8
  • 4孟科,张恒喜,孟曼利.基于粗糙集的战斗机型号工程综合评价决策模型[J].航空学报,2006,27(4):641-645. 被引量:9
  • 5Shakeri M, Raghavan V, Pattipati K R, et al. Sequential testing algorithms for multiple fault diagnosis[J]. IEEE Trans. on Systems, Manand Cybernetics, 2000, 30(1) :1 - 14.
  • 6Rao N S V. On parallel algorithms for single-fault diagnosis in fault propagation graph systems[J]. IEEE Trans. on Parallel and Distributed Systems, 1996, 7(12) :1217- 1223.
  • 7Kokawa M, Miyazaki S, Shingai S. Fault location using digraph and inverse direction search with application [J]. Automatic, 1983, 19(6):729-735.
  • 8Deb S, Pattipati K, Raghavan V, et al. Muti-signal flow graphs: a novel approach for system testability analysis and fault diagnosis[J]. IEEE AES Systems Magazine, 1995, 5 : 14 - 25.
  • 9Pattipati K, Alexandridis M G. Application of heuristic search and information theory to sequential fault diagnosis[J]. IEEE Trans on Systems, Man and Cybernetics, 1990, 20(4):872 - 886.
  • 10Tu F, Pattipati K, Deb S, et al. Computationally efficient algorithms for multiple fault diagnosis in large graph-based systems[J]. IEEE Trans .on Systems, Man and Cybernetics, 2003, 33(1) :73 - 85:

共引文献81

同被引文献30

  • 1仪艳磊,王端民.某航空装备故障诊断模糊推理与评判方法的改进[J].西安工业学院学报,2005,25(2):126-129. 被引量:2
  • 2苏宏升,李群湛.概念格在变压器故障诊断中的应用研究[J].高电压技术,2006,32(2):12-14. 被引量:6
  • 3张文修,仇国芳.基于粗糙集的不确定决策[M].北京:清华大学出版社,2006.32-35.
  • 4Ganter B., Wille R. Formal concept analysis [Mil. Berlin: Springer, 1999.
  • 5Wille Rudolf. Restructuring lattice theory an approach based on hi- erarchies of concepts [-M. Reidel: Dordreeht Boston, 1982.
  • 6Harm S. K. , Deogum J. S. Sequential association rule mining with time lags [J. Journal of Intellectual Information Systems, 2004, 22 (1): 7-22.
  • 7Faid M., Missaoui R. Knowledge discovery in complex objects [J. Computational Intelligence, 1999, 15 (1): 28-49.
  • 8Tonella P. Using a concept lattice of decomposition slices for pro- gram understanding and impact analysis [J. IEEE Transactions On Software Engineering, 2003, 29 (6): 495-509.
  • 9段修生.基于支持向量机的某火控系统故障诊断技术研究[D].石家庄:军械工程学院,2009.
  • 10CHOI H, VARIAN H. Predicting the present with google trends [ J ]. Economic Record, 2012, 88 ( sl ) : 2-9.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部