期刊文献+

基于改进的朴素贝叶斯算法在垃圾短信过滤中的研究 被引量:7

Research of SMS Spam Filtering Based on Optimized NAIVE Bayesian Algorithm
下载PDF
导出
摘要 研究了基于SVM算法的改进朴素贝叶斯文本分类算法及在垃圾短信过滤中的应用。针对朴素贝叶斯算法条件独立性假设、过分依赖于样本空间的分布和内在不稳定性的缺陷,造成了算法时间复杂度的增加,提出了改进的基于SVM算法的朴素贝叶斯算法垃圾短信过滤的解决方案,充分结合了朴素贝叶斯算法高效分类和SVM算法增量学习及不依赖样本空间的特点;首先利用结构风险最小化原理和非线性变换将分类问题转化为二次寻优问题,最后利用朴素贝叶斯算法过滤短信,提高分类的准确度和稳定性;仿真实验结果表明,该算法能够快速得到最优分类特征子集,有效提高了垃圾短信过滤的准确率和分类速度。 This paper discusses improvement of native Bayesian text classification algorithms based on the SVM algorithm and applications in SMS spam filtering.For Bayesian algorithms requiring for assumptions of the conditional's independence,over-reliance on the distribution of sample space and the inherent instability of the defect,resulting in an increase in time complexity,a SVM-based algorithm solution is proposed to improve the simple Bayesian spam messages filtering,which is combined with efficient algorithms Bayesian classification and the advantage of SVM algorithm that it can incremental learns and does not rely on the characteristics of the sample space.First make structural risk minimization principle and the classification of non-linear transform into the second optimization problem,and finally the Bayesian filters the messages,to improve the classification accuracy and stability.Simulation results show that the algorithm can quickly obtain the optimal feature subset classification,effectively improve the accuracy of spam SMS filtering and classification speed.
作者 张东亮 董礼
出处 《计算机测量与控制》 CSCD 北大核心 2012年第2期526-528,551,共4页 Computer Measurement &Control
关键词 SVM 文本分类 朴素贝叶斯 垃圾短信 SVM text classification Bayesian spam messages
  • 相关文献

参考文献6

二级参考文献36

共引文献92

同被引文献68

  • 1钟延辉,傅彦,陈安龙,关娜.基于抽样的垃圾短信过滤方法[J].计算机应用研究,2009,26(3):933-935. 被引量:15
  • 2赵卓翔,王轶彤,田家堂,周泽学.社会网络中基于标签传播的社区发现新算法[J].计算机研究与发展,2011,48(S3):8-15. 被引量:37
  • 3樊建聪,张问银,梁永全.基于贝叶斯方法的决策树分类算法[J].计算机应用,2005,25(12):2882-2884. 被引量:20
  • 4李雯,刘培玉.基于贝叶斯的垃圾邮件过滤算法的研究[J].计算机工程与应用,2007,43(23):174-176. 被引量:14
  • 5李锐,李鹏,曲亚东,等译.机器学习实战[M].北京:人民邮电出版社,2013.
  • 6李钦.基于贝叶斯算法的短信过滤系统设计[J].中国科技论文在线.
  • 7Zhang Harry, Su Jiang. NaYve Bayes for optial ranking [ J ]. Journal of Experimental & Theoretical Artificial Intelligence, 2012,20(2) :79-83.
  • 8Ren J T, Lee S D, Chen X L, et al. Native Bayes classification of uncertain data[ C ]//Proc of 9th IEEE international conf on data mining. Miami ,FL:IEEE ,2009:944-949.
  • 9Hagmayer Y, Osman M. From colling billiard balls to colluding desperate housewives:causal Bays nets as rational modes of everyday causal resoning [ J ]. Synthese, 2012,189 ( 1 ) :89 - 92.
  • 10Cantwell J. On an alleged counter-example to causal decision theory[ J ]. Synthese,2010,173 (2) : 127-152.

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部