期刊文献+

掺铈铌酸锂晶体的生长和表征(英文) 被引量:2

Growth and Characterization of Ce-Doped Lithium Niobate Crystal
原文传递
导出
摘要 采用提拉法生长了掺Ce的同成分LiNbO3(Ce:CLN)晶体。X射线粉末衍射表明,掺杂并不影响晶体结构,其空间群为R3c。采用X射线荧光光谱分析方法,计算得到铈离子的有效分凝系数为0.4。室温下,晶体在700~3500nm波段的透过率达75%。利用X射线光电子谱(X-ray photoelectronspectroscopy,XPS)和Raman光谱分别表征了铈离子对铌酸锂的电子和声子结构的影响。XPS结果表明,铌离子仅存在纯的+5价,铈离子由于浓度较小,未检测到信号。Raman光谱结果显示,除Ce:CLN晶体的A1(TO4)模波数和A1(TO1)模半峰宽较纯的LiNbO3晶体发生明显变化外,其余模都与其基本一致,表明铈离子主要进入晶格的Nb位置。 The Ce-doped congruent lithium niobabe(Ce:CLN) single crystal was grown by the Czochralski method.The result by X-ray diffraction shows that the as-grown crystal exhibits a single-phase(R3c) LN,and the doping of Ce ions into the CLN crystal lattice does not affect its basic crystal structure.The effective segregation coefficient of Ce ions determined by X-ray fluorescence analysis was 0.4.At room temperature,the transmittance of as-grown crystal was 75% in the range of 700–3 500 nm.The influence of Ce incorporation into CLN crystal lattice on the electronic and phonon structure was analyzed by X-ray photoelectron spectroscopy(XPS) and Raman scattering spectroscopy,respectively.The XPS results show that Nb ions only exhibit a pure +5 valence,and the signal of Ce ions is not recorded due to its low concentration.The Raman spectrum results show that the modes of as-grown Ce:CLN are similar to those of pure LiNbO3 except for the little wave number shifting of A1(TO4) mode and shoulder linewidth of A1(TO1) mode,indicating that the Ce ions mainly occupy the Nb-sites in the as-grown crystal.
机构地区 山东大学
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2012年第3期412-415,共4页 Journal of The Chinese Ceramic Society
基金 国家自然科学基金(50872066) 国家自然科学基金重点项目(51032004) 国家重点基础研究发展计划(2010CB833103)资助项目
关键词 掺铈铌酸锂单晶 提拉法 X射线光电子谱 RAMAN光谱 cerium-doped lithium niobate crystal Czochralski method X-ray photoelectron spectroscopy Raman spectra
  • 相关文献

参考文献17

  • 1TOMENO I,MATSUMURA S.Elastic and dielectric properties ofLiNbO3[J]J Phys Soc Jpn,1987,56:163–177.
  • 2HOLMES R J,SMYTH D M.Titanium diffusion into LiNbO3 as afunction of stoichiometry[J]J Appl Phys,1984,55:3531–3535.
  • 3BORDUI P F,NORWOOD R G,BIRD C D,et al.Compositionaluniformity in growth and poling of large-diameter lithium niobatecrystals[J]J Cryst Growth,1991,113:61–68.
  • 4BRYAN D A,GERSON R,TOMASCHKE H E.Increased opticaldamage resistance in lithium niobate[J]Appl Phys Lett,1984,4:847–849.
  • 5VOLK T,RUBININA N,WOHLECKE M.Optical-damage-resistentimpurities in lithium niobate[J]J Opt Soc Am B,1994,11:1681–1687.
  • 6VOLK T,PRYALKIN V,RUBININA N.Optical-damage-resistentLiNbO3:Zn crystal[J]Opt Lett,1990,15:996–998.
  • 7JOHNSON L F,BALLMAN A A.Coherent emission from rare earthions in electron-optic crystals[J]J Appl Phys,1969,40:297–302.
  • 8DOMINIAK-DZIK G,GOLAB S,PRACKA I,et al.Spectroscopicproperties and excited-state relaxation dynamics of Er3+in LiNbO3[J]Appl Phys A,1994,58:551–555.
  • 9MALINOWSKI M,MYZIAK P,PIRAMIDOWICZ R.Spectroscopicand laser properties of LiNbO3:Dy3+crystals[J]Acta Phys Polinica A,1996,90(1):181–185.
  • 10JERMANN F,KRATZIG E.Charge transport process in LiNbO3:Fe athigh intensity laser pulse[J]Appl Phys A,1992,55:114–118.

同被引文献12

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部