摘要
通过真空抽滤的方法制备碳纳米管纸,并对其进行循环伏安电化学氧化处理.以该电化学氧化处理的碳纳米管(CV-CNT)纸为基体,采用电化学聚合沉积聚苯胺(PANI),随后吸附石墨烯(GR),制备具有三明治夹心结构的碳纳米管/聚苯胺/石墨烯(CV-CNT/PANI/GR)复合纳米碳纸.该结构外层为GR,内层由PANI包裹的CNT形成网络骨架,充分发挥三者各自优势构建柔性电极材料.用场发射扫描电镜(FE-SEM)、透射电子显微镜(TEM)、拉曼光谱对其形貌与结构进行表征,并测试其电化学性能.研究发现:PANI呈纳米晶须状,并均匀包裹在CV-CNT表面;该复合碳纸具有良好的电容特性、大电流充放电特性以及良好的循环稳定性能.电流密度为0.5A·g-1时,比电容可达415F·g-1;20A·g-1时仍能保持106F·g-1的比电容.由于GR的保护作用,1000次循环之后较CV-CNT/PANI保持更高的有效比电容.该CV-CNT/PANI/GR复合碳纸展现出在高性能超级电容器柔性电极材料的潜在应用价值.
Flexible carbon nanotube/polyaniline/graphene(CNT/PANI/GR)composite papers were prepared by electrochemical polymerization of PANI on cyclic voltammetry electrochemical oxidized CNT (CV-CNT)papers and the successive adsorption of GR.CNT,PANI,and GR provided a flexible conducting network skeleton,faradaic pseudocapacitive material,and surface conductivity modification properties, respectively.The composite papers exhibited a sandwich structure with an outer layer of GR and an inner layer composite network of CV-CNT/PANI,taking full advantage of the superior properties of the three components.The structure and morphology were characterized by field emission scanning electron microscopy(FE-SEM),transmission electron microscopy(TEM),and Raman spectroscopy.The chemical capacitance characteristics were studied thoroughly.It was shown that PANI nanowhiskers wrapped around the CV-CNT surface evenly.The composite paper exhibited enhanced capacitance and high current charge/discharge characteristics as a supercapacitor electrode.The specific capacitance level could reach 415 F·g -1 at a current density of 0.5 A·g -1 and maintain a level of 106 F·g -1 at the higher current density of 20 A·g -1 .In the protection of GR,the composite maintained a higher capacitance than CV-CNT/PANI after 1000 cycles,suggesting that the CV-CNT/PANI/GR composite would be an ideal flexible electrode material for a supercapacitor.
出处
《物理化学学报》
SCIE
CAS
CSCD
北大核心
2012年第3期609-614,共6页
Acta Physico-Chimica Sinica
基金
苏州市科技项目(SYG201018)
江苏省产学研联合创新项目(BY2011178)资助~~
关键词
碳纳米管
聚苯胺
石墨烯
电化学聚合
电容
Carbon nanotube
Polyaniline
Graphene
Electrochemical polymerization
Capacitance