摘要
基于计量逻辑学和真度方程的思想,提出了真度方程组的概念。给出了真度方程组的同型解,探讨了真度方程组解集合的相容性。将这一理论成功地运用于多重广义MP问题的研究,求出了多重广义MP问题的三I真度解与α-三I真度解,为进一步探讨模糊推理的逻辑基础提供了一个可行的途径。
Based on the quantitative logic and the idear of truth degree equation in classical logic L, the notion of truth degree equation sets are advised. And the same type solutions of truth degree equations sets are given, the consistence of solution sets of truth degree equation sets are discussed. Finally, the solutions of triple truth degree solution and αtriple truth degree solution of multiple generalized MP are given, which provide a feasible approach for continue studing the logical foundations of the fuzzy inference.
出处
《计算机工程与应用》
CSCD
2012年第7期57-59,105,共4页
Computer Engineering and Applications
基金
陕西科技大学自选项目(No.zx10-33)
陕西省自然科学基础研究计划资助项目(No.2011JQ1015)
关键词
多重广义MP问题
三I算法
α-三I真度解
模糊推理
multiple generalized modus ponens
Triple I method
αTriple I truth degree solution
fuzzy inference