期刊文献+

复杂疾病模型快速参数求解算法 被引量:1

Fast algorithm to calculate parameters of complex disease model
下载PDF
导出
摘要 全基因组关联研究(GWAS)是在探究人类复杂疾病相关基因的重要方法,实用有效的算法是GWAS成功的关键,因此根据疾病模型生成模拟数据对GWAS算法进行比较测试具有重要的意义。模拟测试要求根据各种输入的控制量计算出疾病模型的相关参数,但是目前缺乏相关公开的算法。提出了一个求解这些参数的分支限界算法。大量实验测试表明该算法能快速精确地计算出疾病模型的相关参数,可用于搭建GWAS算法测试平台。 Genome-Wide Association Study(GWAS)is an important method to search for susceptible genes of complex diseases, and practical and effective algorithms are in need in GWAS. Testing GWAS algorithm on simulation data based on different disease model is important in comparing their performances. Generating the simulation data requires calculating the parameters of diseases models according to the control parameters, but there are no corresponding public algorithms. This paper proposes a branch and bound algorithm to compute the parameters of diseases models. Extensive experimental results show that the algorithm works out quickly with accurate parameters of diseases models. The algorithm can be used in constructing test platforms for GWAS algorithm.
作者 谢民主 杨洋
出处 《计算机工程与应用》 CSCD 2012年第7期121-123,共3页 Computer Engineering and Applications
基金 国家自然科学基金(No.61070145) 湖南省自然科学基金(No.09JJ3116) 中国博士后科学基金(No.20090450189) 中南大学博士后科学基金
关键词 复杂疾病模型 分支限界算法 多基因交互 发病率 models of complex diseases branch and bound algorithm multi-gene interaction penetrance
  • 相关文献

参考文献13

  • 1Altshuler D,Daly M J, Lander E S.Genetic mapping in human disease[J]. Science, 2008,322 ( 5903 ) : 881-888.
  • 2Wellcome Trust Case Contorl Consotium.Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls[J].Nature, 2007,447 (7145 ) : 661-678.
  • 3Goldstein D B.Common genetic variation and human traits[J].N Engl J Med, 2009,360(17) : 1696-1698.
  • 4Cordell H J.Detecting gene-gene interactions that underlie human diseases[J].Nat Rev Genet,2009,10(6):392-404.
  • 5Li J, Horstman B, Chen Y.Detecting epistasis effects in genome-wide association studies based on ensemble approaches[J]. Bioinformatics, 2011,27 ( 13 ) : 222-229.
  • 6Tang W, Wu X, Jiang R, et al.Epistatic module detection for case-control studies: a Bayesian model with a Gibbs sampling strategy[J].PLoS Genet,2009,5 (5).
  • 7Wan X,Yang C,Yang Q,et al.BOOST:A fast approach to detecting gene-gene interactions in genome-wide case-control studies[J].Am J Hum Genet,2010,87(3):325-340.
  • 8Wan X,Yang C,Yang Q,et al.Detecting two-locus associations allowing for interactions in genome-wide association studies[J]. Bioinformatics, 2010,26 ( 20 ) : 2517-2525.
  • 9Wan X, Yang C, Yang Q, et al.Predictive rule inference for epistatic interaction detection in genome-wide association studies[J]. Bioinformatics, 2010,26 ( 1 ) : 30-37.
  • 10Zhang Y, Liu J S.Bayesian inference of epistatic interactions in case-control studies[J].Nat Genet,2007,39(9) : 1167-1173.

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部