摘要
介绍系统循环码的定义及矩阵描述,分析其码重分布特性,根据向量间距离的概率定义码重分布距离,推导随机序列的理论码重分布概率,提出实际序列码重分布概率的估计方法和利用实际序列的码重分布概率和随机序列的理论码重分布概率之间的距离估计码组长度和起始点的方法,在此基础上利用高斯消元法估计生成矩阵和校验矩阵,并提出了在误码情况下的识别方法。最后并对不同长度的码进行仿真实验,结果表明文中方法能够在误码为10-3的情况下有效地识别中短码。
The definition and matrix description of linear cyclic code is introduced. The distributing of code weight is analyzed. The distance of code weight distributing is defined according to distance of vectors. The theoretic probability of code weight of random sequence is ratiocinated. The method for estimating code weight distributing of actual sequence is established. The code length and start is estimated by the distance between the code weight distributing and the generation matrix and check matrix is estimated by Gauss elimination. The method for recognizing the code with error code is established. The results of simulating experiment of different length code show that this method can recognize code with middle and short code length effectively when BER is 10-3.
出处
《计算机工程与应用》
CSCD
2012年第7期150-153,共4页
Computer Engineering and Applications
基金
国家自然科学基金(No.60902017)
安徽省自然科学基金(No.10040606Q60)
关键词
码重分布
线性循环码
码组长度
生成矩阵
distributing of code weight
linear cyclic code
code length
generation matrix