摘要
Dew has been recognized for its ecological significance and has also been identified as an additional source of water in arid zones. We used factorial control experiment, under dew presence in the field, to explore photosynthetic performance, water status and growth response of desert annual herbage. Bassia dasyphylla seedlings were grown in contrasting dew treatments (dew-absent and dew-present) and different watering regimes (normal and deficient). The effects of dew on the water status and photosynthetic performance of Bassia dasyphylla grown in a desert area of the Hexi Corridor in Northwestern China, were evaluated. The results indicated the pres- ence of dew significantly increased relative water content (RWC) of shoots and total biomass of plants in both water regimes, and enhanced the diurnal shoot water potential and stomatal conductance in the early morning, as well as photosynthetic rate, which reached its maximum only in the water-stressed regime. The presence of dew increased aboveground growth of plants and photosynthate accumulation in leaves, but decreased the root-to-shoot ratio in both water regimes. Dew may have an important role in improving plant water status and ameliorating the adverse effects of plants exposed to prolonged drought.
Dew has been recognized for its ecological significance and has also been identified as an additional source of water in arid zones. We used factorial control experiment, under dew presence in the field, to explore photosynthetic performance, water status and growth response of desert annual herbage. Bassia dasyphylla seedlings were grown in contrasting dew treatments (dew-absent and dew-present) and different watering regimes (normal and deficient). The effects of dew on the water status and photosynthetic performance of Bassia dasyphylla grown in a desert area of the Hexi Corridor in Northwestern China, were evaluated. The results indicated the pres- ence of dew significantly increased relative water content (RWC) of shoots and total biomass of plants in both water regimes, and enhanced the diurnal shoot water potential and stomatal conductance in the early morning, as well as photosynthetic rate, which reached its maximum only in the water-stressed regime. The presence of dew increased aboveground growth of plants and photosynthate accumulation in leaves, but decreased the root-to-shoot ratio in both water regimes. Dew may have an important role in improving plant water status and ameliorating the adverse effects of plants exposed to prolonged drought.
基金
financially supported by the National Natural Sciences Foundation of China (30771767 and 40601016)