期刊文献+

基于多点对参考模型的车辆阴影消除

Vehicle Shadow Elimination Based on Multi-Point Pair Reference Model
下载PDF
导出
摘要 为了解决车辆检测过程中的阴影干扰问题,以点对属性为基础,利用HSL色彩空间中前景、背景和运动阴影之间的色度、亮度属性,在给定的背景图像集中,采用离线训练的方法,于图像的全局域中建立稳定的不随环境变化的多点对参考模型.该模型充分考虑了图像全局域的颜色信息,减小了背景像素的误差,能在线消除运动阴影对车辆分割的影响,且对于复杂环境下的运动背景和光照变化具有较强的抑制作用.为减小算法的计算量,引入背景模板,减少了参与运算的像素点,提高了算法的分割效率.仿真实验表明,运用多点对参考模型消除车辆运动阴影,比其它阴影消除方法具有更强的准确性和鲁棒性. In order to eliminate the shadow interference in a vehicle detection process,a stable multi-point pair refe-rence model based on point pair properties,which is insensitive to the environment,is established in the global domain of the image.This model takes advantage of the hue and the luminance among the foreground,the background and the moving shadow in HSL color space and adopts the offline training method in a given background image set.By fully considering the color information of the whole image,the model reduces the error of background pixels,online eliminates the impact of moving shadow on vehicle segmentation and strongly inhibits the moving background and illumination change in complex environments.Moreover,to simplify the computation of the proposed algorithm,background templates are introduced,which greatly reduces the number of operation pixels and improves the segmentation efficiency.Simulated results indicate that,as compared with the other vehicle shadow elimination me-thods,the proposed algorithm based on the multi-point pair reference model is more accurate and robust.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第12期63-69,共7页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60835001) 华南理工大学中央高校基本科研业务费专项资金资助项目(2009ZM0143)
关键词 多点对参考模型 阴影消除 车辆分割 颜色空间 multi-point pair reference model shadow elimination vehicle segmentation color space
  • 相关文献

参考文献20

  • 1Kilger M.A shadow handler in a video based real time traffic monitoring system[C]//IEEE Workshop Applications of Computer Vision.Palm Spring:IEEE,1992:11-18.
  • 2Koller D,Weber J,Huang T,et al.Towards robust automatic traffic scene analysis in real-time[C]//Proceedings of International Conference on Pattern Recognition.Lake Buena Vista:IEEE,1994:126-131.
  • 3Gupte S,Masoud O,Martin R F K,et al.Detection and classification of vehicles[J].IEEE Transactions on Intelligent Transportation Systems,2002,3 (1):37-47.
  • 4Wren C,Azarbayejani A,Darrell T,et al.Pfinder:realtime tracking of the human body[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):780-785.
  • 5Stauffer C,Grimson W E L.Adaptive background mixture model for real-time tracking[C]// Proceedings of IEEE Conference on Vision and Pauern Collins,Computer Recognition.Fort Collins:IEEE,1999:246-252.
  • 6Stauffer C,Grimson W E L.Learning patterns activity using real time transactions pattern and machine tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22 (8):747-757.
  • 7Hsieh J W,Yu S H,Chen Y S,et al.A shadow elimination method for vehicle analysis[C]// Proceedings of the 17th International Conference on Pattern Recognition.Cambridge:[s.n.],2004:372-375.
  • 8Hsieh J W,Yu S H,Chen Y S,et al.Automatic traffic surveillance system for vehicle tracking and classification[J].IEEE Transactions on Intelligent Transportation Systems,2006,7 (2):175-187.
  • 9Yoneyama A,Yeh C H,Kuo C C.Robust vehicle and traffic information extraction for highway surveillance[J].EURASIP Journal on Applied Signal Processing,2005,2005(14):2305-2321.
  • 10Choi J M,Yoo Y J,Choi J Y.Adaptive estimator for removing shadow of moving object[J].Computer Vision and Image Understanding,2010,114(9):1017-1029.

二级参考文献19

  • 1ROLLER D,WEBER J,HUANG T,et al.Towards Robust Automatic Traffic Scene Analysis in Real-time[C] //Proceedings of International Conference on Pattern Recognition.Lake Buena Vista,FL,USA:IEEE,1994:126-131.
  • 2GUPTE S,MASOUD 0,MARTIN R F K,et al.Detection and Classification of Vehicles[J].IEEE Transactions on Intelligent Transportation Systems,2002,3 (1):37-47.
  • 3WREN C,AZARBAYEJANI A,DARRELL T,et al.Pfinder:Real-time Tracking of the Human Body[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19 (7):780-785.
  • 4STAUFFER C,GRIMSONL W E L.Adaptive Background Mixture Model for Real-time Tracking[C] //Proceedings of IEEE Conference on Vision and Pattern Collins,Computer Recognition.Fort Collins,CO,USA:IEEE,1999:246-252.
  • 5STAUFFER C,GRIMSON W E L.Learning Patterns Activity Using Real Time Transactions Pattern and Machine Tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22 (8):747 -757.
  • 6FRIEDMAN N,RUSSELL S.Image Segmentation in Video Sequences:A Probabilistic Approach[C] // Proceedings of 13 th Conference on Uncertainty in Artificial Intelligence.Providence,RI:UAI,1997:175-181.
  • 7STAUFFER C,GRIMSON WEL Adaptive Background Mixture Models for Real-time Tracking[C] // Proceedings of IEEE International Conference on Computer Vision Pattern Recognition,Fort Collins,CO,USA:IEEE,1999:246-252.
  • 8LI L,HUANG W,GU I,et al.Statistical Modeling of Complex Backgrounds for Foreground Object Detection[J].IEEE Transactions on Image Processing,2004,13 (11):1459-1472.
  • 9ELLIS T,XU M.Object Detection and Tracking in an Open and Dynamic World[C] //Proceedings of 2nd IEEE International Workshop on Performance Evaluation of Tracking Surveillance (PETS).Kauai,HI,USA:IEEE,2001:35-40.
  • 10LIU Y,AI H Z,XU G Y.Moving Object Detection and Tracking Based on Background Subtraction[C] // Proceedings of SPIE Object Detection,Classification,and Tracking Technologies.Wuhan,China; SPIE,2001,4554:62-66.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部