期刊文献+

小波变换在脉冲星降噪中的应用

The application of wavelet transformation in pulsar denoising
下载PDF
导出
摘要 脉冲星信号是典型的信噪比极低的一种非平稳信号,国内目前对于脉冲星去噪的方法主要是采用对脉冲星信号周期的叠加来获得较为明显的脉冲信息。本文分析了被噪声污染后的脉冲星信号特性,根据脉冲星信号的特点采用小波变换方法对其噪声进行处理,研究了基小波的选取和分解尺度对降噪效果的影响。结果表明,小波变换降噪算法能够有效的降低脉冲星信号中的噪声,提高信噪比,同时可以保留高频有用信息。 Pulsar signal is a typical nonstationary signals with low SNR, the main pulsar denoising methods is using the superposition of the pulsar signal period to get obvious pulse information. This paper analyzes the characteristic of noising pulsar, removes noise with wavelet transformation, discusses the result of denoising with different basic wavelet and different wavelet decomposition scale. The results shows that the wavelet transformation denoising algorithm can eliminate the noise of pulsar signal, advance the SNR and reserve the useful information.
出处 《微计算机信息》 2011年第12期158-160,共3页 Control & Automation
关键词 小波变换 降噪 脉冲星 基小波 分解尺度 信噪比 wavelet transformation denoising pulsar basic wavelet decomposition scale SNR
  • 相关文献

参考文献3

二级参考文献18

  • 1王亚,吕新华,王海峰.一种改进的小波阈值降噪方法及Matlab实现[J].微计算机信息,2006(02X):259-261. 被引量:45
  • 2Donoho D L,Johnstone I M.Ideal spatial adaptation via wavelet shrinkage.Biometrika,1994,81:425~455
  • 3Donoho D L.Denoising by soft-thresholding.IEEE Trans on Information Theory,1995,41(3):613~627
  • 4Chang S G,Yu B,Vetterli M.Spatially adaptive wavelet thresholding with context modeling for image denoising.In Fifth IEEE Int'l Conference on Image Processing,Chicago,1998,10:535~539
  • 5胡昌华 张军波 夏军.基于MATLAB的系统分析与设计-小波分析(第1版)[M].西安:西安电子科技大学出版社,2000..
  • 6Simoncelli E P.Bayesian denoising of visual images in the wavelet domain.Lecture Notes in Statistics,Springer-Verlag,New York,June 1999,141:291~308
  • 7Simoncelli E P.Noise removal via Bayesian wavelet coring.Proceedings of 3rd IEEE International Conference on Image Processing,1966,Ⅰ:379~382
  • 8Portilla J,Simoncelli E P.A parametric texture model based on joint statistics of complex wavelet coefficients.Int'l Journal of Computer Vision,2000,40(1):49~71
  • 9Wen Xianyang,Peter W.Development of an advanced noise reduction method for vibration analysis based on singular value decomposition.Independent Nondestrue tive Texting and Evaluation,2003,36(6):419~432
  • 10Fodor I K,Kamath C.Denoising through wavelet shrinkage:An empirical study.J of Electronic Imaging,2003,12(1):151~160

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部