期刊文献+

子群的拟正规性对有限群结构的影响(英文)

The influence of F_s-quasinormality of subgroups on the structure of finite groups
下载PDF
导出
摘要 设G是一个有限群,F是一个群类.群G的子群H称为在G中是Fs拟正规的,如果存在G的正规子群T,使得HT在G中s置换且(H∩T)HG/HG≤ZF∞(G/HG).本文利用Fs拟正规的概念,得到了一些有限群的新刻画. Let G be a finite group and F a class of groups.A subgroup H of G is said to be Fs-quasinormal in G if there exists a normal subgroup T of G such that HT is s-permutable in G and(H∩T)HG/HG is contained in the F-hypercenter ZF∞(G/HG) of G/HG.In this paper,some new characterizations of finite groups are obtained by using the concept of Fs-quasinormal subgroups,and some known results are generalized.
出处 《徐州师范大学学报(自然科学版)》 CAS 2011年第4期9-11,共3页 Journal of Xuzhou Normal University(Natural Science Edition)
基金 Research supported by the National Natural Science Foundation of China(11071229) the Natural Science Foundation for Colleges and Universities of Jiangsu Province(10KJD110004) the Postgraduate Innovation Grant of Xuzhou Normal University(2011YLB025)
关键词 有限群 Fs拟正规子群 正规子群 次正规子群 finite group Fs-quasinormal subgroup normal subgroup subnormal subgroup
  • 相关文献

参考文献15

  • 1Doerk K,Hawkes T.Finite soluble group[M].Berlin:Walter de Gruyter,1992.
  • 2Guo Wenbin.The theory of groups[M].Beijing:Sci Press,2000.
  • 3Deskins W E.On quasinormal subgroups of finite groups[J].Math Z,1963,82(2):125.
  • 4Kegel O H.Sylow-gruppen und subnormalteiler endli-cher gruppen[J].Math Z,1962,78(1):205.
  • 5Wang Yanming.c-Normality of groups and its proper-ties[J].J Algebra,1996,180(3):954.
  • 6Yang Nanying,Guo Wenbin.On F n-supplemented sub-groups of finite groups[J].Asian Euro J Math,2008,1(4):619.
  • 7Feng Xiuxian,Guo Wenbin.On F h-normal subgroups of finite groups[J].Front Math China,2010,5(4):653.
  • 8Guo Xiuyun,Shum K P.On c-normal maximal and mini-mal subgroups of Sylow p-subgroups of finite groups[J].Arch Math,2003,80(6):561.
  • 9Li Deyu,Guo Xiuyun.The influence of c-normality of subgroups on the structure of finite groups[J].J Pure&Appl Algebra,2000,150(1):53.
  • 10Hu Bin.A note on S-C-permutably embedded subgroups of finite groups[J].J Xuzhou Norm Univ:Nat Sci Ed,2010,28(1):5.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部