期刊文献+

Hilbert空间中由Lévy过程驱动的带有局部单调系数的SPDE(英文)

SPDE driven by Lévy process with locallymonotone coefficients in Hilbert space
下载PDF
导出
摘要 研究一类由Lévy过程驱动的带有局部单调系数的随机偏微分方程。 In this paper,SPDE driven by Lévy process with merely locally monotone coefficients in Hilbert space is studied,and the existence and uniqueness of the solution for the equation are obtained.
出处 《徐州师范大学学报(自然科学版)》 CAS 2011年第4期43-48,共6页 Journal of Xuzhou Normal University(Natural Science Edition)
基金 Research supported by the National Natural Science Foundation of China(10971180)
关键词 随机偏微分方程 LÉVY过程 解的存在唯一性 SPDE Lévy process existence and uniqueness of solution
  • 相关文献

参考文献1

二级参考文献16

  • 1Erika Hausenblas.SPDEs driven by Poisson random measure with non Lipschitz coefficients: existence results[J]. Probability Theory and Related Fields . 2007 (1-2)
  • 2Sergei B. Kuksin.The Eulerian Limit for 2D Statistical Hydrodynamics[J]. Journal of Statistical Physics . 2004 (1-2)
  • 3Franco Flandoli.Dissipativity and invariant measures for stochastic Navier-Stokes equations[J]. Nonlinear Differential Equations and Applications NoDEA . 1994 (4)
  • 4Hausenblas E.SPDEs driven by Poisson random measure with non Lipschitz coe cients: existence results. Probability Theory and Related Fields . 2007
  • 5Robinson J C.Infinite-dimensional dynamical systems: an introduction to dissipative parabolic PDEs and the theory of global attractors. . 2001
  • 6Roger Temam.Navier-Stokes Equations and Nonlinear Functional Analysis. . 1995
  • 7Teman R.Infinite-dimensional dynamical systems in mechanics and physics,2nd ed. . 1997
  • 8Da,Prato,G.,Zabczyk,J. Stochastic Equations in Infinite Dimensions . 1992
  • 9Da Prato,G.,Zabczyk,J.Ergodicity for infinite dimensional systems. London Mathematical Society. Lecture Notes Series, vol. 229 . 1996
  • 10Flandoli,F.Dissipativity and invariant measures for stochastic Navier-Stokes equations. NoDEA Nonlinear Differential Equations and Applications . 1994

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部