期刊文献+

基于GMDH的迁移特征选择模型研究

Research about transferred feature selection based on GMDH
下载PDF
导出
摘要 将迁移学习和数据分组处理算法集成起来,提出了一种基于数据分组处理算法的迁移特征选择(GM-DH-TFS)模型。在UCI的四个数据集上,将GMDH-TFS模型与以全部特征作分类(FULL)的结果以及常用的特征选择模型(前向监督特征选择模型(SFFS)、前向半监督特征选择模型(FW-SemiFS)和迁移特征选择模型(TFS))作比较实验,结果表明,GMDH-TFS在特征选择方面比其他四种方法有更好的效果,在小样本情况下也得到了同样的结果。GMDH-TFS模型可以在数据分布不一致的情况下进行特征选择,同时面对数据匮乏也能取得理想的效果。 This paper proposed a transferred feature selection model based on group method of data handling(GMDH-TFS) by integrating transfer learning and the group method of data handling algorithm.Comparison on four data sets of UCI among GMDH-TFS,classification with full features(FULL),supervised forward feature selection(SFFS),forward semi-supervised feature selection(FW-SemiFS) and transferred feature selection(TFS) show that GMDH-TFS has a better performance than other methods as well as in the case of learning with small samples.GMDH-TFS can do feature selection when the data are under different distribution,and can get satisfactory results even the data are not enough.
出处 《计算机应用研究》 CSCD 北大核心 2012年第3期829-832,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(71071101 70771067 71101100) 四川省软科学计划资助项目(2010ZR0132) 四川大学科研启动基金资助项目(2010SCU11012)
关键词 特征选择 迁移学习 数据分组处理 feature selection transfer learning group method of data handling(GMDH)
  • 相关文献

参考文献15

  • 1GISYON I, ELISSEEFF A. An introduction to variable and feature se- lection [ J ]. Journal of Machine Learning Research ,2003,3 ( 1 ) : 1157-1182.
  • 2LIU Huan, YU Lei. Toward integrating feature selection algorithms for classification and clustering[ J]. IEEE Trans on Knowledge and Data Engineering,2005,17(4) :491-502.
  • 3HUANG Jin-jie, CAI Yun-ze, XU Xiao-ming. A hybrid genetic algo- rithm for feature selection wrapper based on mutual information [ J]. Pattern Recognition Letters ,2007,28 ( 13 ) : 1825-1844.
  • 4BI Wei, SHI Yuan, LAN Zhen-zhong. Transferred feature selection [ C ]//Proc of IEEE International Conference on Data Mining Work- shops. Washington DC : IEEE Computer Society, 2009:416-421.
  • 5ROMERO E, SOPENA J M. Perfornling feature selection with muhi- layer perceptrons [ J ]. IEEE Yrans on Neural Networks, 2008,19 (3) :431-441.
  • 6PUDIL P, NOVOVICOVA J, KITTLER J. Floating search methods in feature selection [J]. Pattern Recognition Letters, 1994,15 ( 11 ) : 1119-1125.
  • 7Md KABIR M, Md ISLAM M, MURASE K. A new wrapper feature selection approach using neural network [ J ]. Neurocomputing, 2010,73 ( 16-18 ) :3273-3283.
  • 8DAI Wen-yuan, YANG Qiang, XUE Gui-rong, et al. Boosting for transfer learning[ C ]//Proe of the 24th international Conference on Machine Learning. New York : ACM Press, 2007 : 193-200.
  • 9PAN S J, ZHENG V W, YANG Qiang, et al. Transfer learning for WiFi-based indoor loealization [ C ]//Proe of Workshop on Transfer Learning for Complex Task and the 23rd AAAI Conference on Artifi- cial Intelligence. 2008:43-48.
  • 10BLITZER J, DREDZE M, PEREIRA F. Biographies, bollywood, boom-boxes and blenders: domain adaptation for sentiment classifica- tion[ J]. Computational Linguistics ,2007,45 ( 1 ) :440-447.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部