期刊文献+

基于趋利避害原则的粒子群算法研究 被引量:1

Research on particle swarm optimizing algorithm based on seek advantage and avoid disadvantage principle
下载PDF
导出
摘要 针对标准粒子群算法进行多极点函数优化时易导致早熟收敛及陷入局部最优的问题,把生物学中昆虫生存的趋利避害原则引入到粒子群优化算法中,改变传统粒子群优化算法只存在趋利操作而没有避害操作的单向性,提出了两种不同的保持或增加种群多样性的改进算法。仿真实验结果表明,与传统粒子群优化算法相比,采用基于趋利避害原则的粒子群算法处理复杂的多峰函数可显著提高算法的全局寻优性能。 To get rid of resulting in premature convergence and plunging into local optimum for standard particle swarm optimization to solve multiple-order pole functions,this paper introduced seek advantage and avoid disadvantage principle of some insects in biology into particle swarm optimization algorithm to change the single direction characteristic of the traditional algorithm which only had drawing on advantage operation instead of avoiding disadvantage operation.It proposed both kinds of ameliorated algorithms to maintain or increase population diversity.Simulation experiment results indicate that the particle swarm optimization based on seek advantage and avoid disadvantage principle can prominently improve the global optimization ability of the algorithm when dealing with complicated multimodal functions.
出处 《计算机应用研究》 CSCD 北大核心 2012年第3期933-936,共4页 Application Research of Computers
关键词 粒子群优化 趋利避害 种群多样性 标准测试函数 particle swarm optimization seek advantage and avoid disadvantage population diversity benchmark function
  • 相关文献

参考文献16

  • 1KENNEDY J, EBERHART R. Particle swarm optimization [ C ]//Proc of IEEE International Conference on Neural Networks. Piscataway: IEEE Service Center, 1995 : 1942-1948.
  • 2SHI Yu-hui, EBERHART R C. A modified particle swarm optimizer [ C ]//Proc of IEEE International Conference on Evolutionary Compu- tation. [ S. l. ] :IEEE, 1998:69-73.
  • 3EBERHART R C, SHI Yu-hui. Tracking and optimizing dynamic sys- tems with particle swarms[ C ]//Proc of IEEE Congress on Evolution- ary Computation. Piscataway, NJ : IEEE Service Center,2001:94-97.
  • 4RATNAWEERA A, HALGAMUGE S K, WATSON H C. Self-organi- zing hierarchical particle swarm optimizer with time varying accelera- tion coefficients[J]. IEEE Trans on Evolutionary Computation, 2004,8 (3) :240-255.
  • 5张选平,杜玉平,秦国强,覃征.一种动态改变惯性权的自适应粒子群算法[J].西安交通大学学报,2005,39(10):1039-1042. 被引量:138
  • 6KENNEDY J, MENDES R. Population structure and particle swarm performance[ C ]//Proc of IEEE Congress on Evolutionary Computa- tion. Washington DC :IEEE Computer Society,2002 : 1571 - 1675.
  • 7LIANG J J, SUGANTHAN P N. Dynamic multiswarm particle swarm optimizer [ C ]//Proc of IEEE Swarm Intelligence. 2005 : 124 - 129.
  • 8王雪飞,王芳,邱玉辉.一种具有动态拓扑结构的粒子群算法研究[J].计算机科学,2007,34(3):205-207. 被引量:16
  • 9高鹰,谢胜利.免疫粒子群优化算法[J].计算机工程与应用,2004,40(6):4-6. 被引量:160
  • 10JUANG C F, LIOU Y C. TSK-type recurrent fuzzy network design by the hybrid of genetic algorithm and particle swarm optimization [ J ]. IEEE Trans on Systems ,2004,34 (2) :997-1006.

二级参考文献27

  • 1Eberhart R C,Kennedy J. A new optimizer using particle swarm theory [A]. Proceedings of the Sixth International Symposium on Micro Machine and Human Science [C]. Piscataway, USA: IEEE Service Center, 1995. 39-43.
  • 2Eberhart R C,Shi Y H. Particle swarm optimization: developments, applications and resources [A]. Proceedings of the IEEE Congress on Evolutionary Computation [C]. Piscataway, USA: IEEE Service Center, 2001. 81-86.
  • 3Shi Y H,Eberhart R C. Fuzzy adaptive particle swarm optimization [A]. Proceedings of the IEEE Congress on Evolutionary Computation [C]. Piscataway, USA: IEEE Service Center, 2001. 101-106.
  • 4Shi Y H, Eberhart R C. A modified particle swarm optimizer [A]. Proceedings of the IEEE Congress on Evolutionary Computation [C]. Piscataway,USA: IEEE Service Center, 1998. 69-73.
  • 5Bonabeau E,Dorigo M,Theraulaz G.Swarm Intelligence:From Natural to Artificial Systems.Oxford University Press,New York,1999
  • 6Kennedy J,Eberhart R C.Particle Swarm Optimization.In:Proceedings of the IEEE International Conference on Neural Networks,1995.1942~1948
  • 7Hu X,Eberhart R C,Shi Y H.Engineering Optimization with Particle Swarm.In:Proceedings of the IEEE Swarm Intelligence Symposium,Indianapolis,Indiana,USA,2003.53~57
  • 8Parsopoulos K E,Vrahatis M N.Recent approaches to global optimization problems through particle swarm optimization.Natrual Computing,2002,1 (2-3):235~306
  • 9Wang F,Qiu Y H.Optimal Tuning of PID Controllers Based on an Improved Particle Swarm Algorithm.In:Proceeding of the 2006 International Symposium on AI-50 Years' Achievements,Future Directions and Social Impacts (ISAI'06),Beijing,China,2006.367~370
  • 10Hendtlass T.Preserving Diversity in Particle Swarm Optimisation.Lecture Notes in Computer.Science,2003.31~40

共引文献307

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部