期刊文献+

一种新的重名消解算法在保险领域中的应用研究 被引量:3

Application of data mining in customer name disambiguation of insurance field
下载PDF
导出
摘要 研究客户重名消解问题。针对以往重名消解方法如文本聚类的方法需考虑大量无用词汇并需要人工设定阈值以及类别数量,而基于信息抽取的人物相关属性相似度方法对于人物信息的抽取具有依赖性,提出了一种改进的重名消解算法。该算法首先对具有相同标志的客户进行属性匹配,合并匹配成功的标志;然后进行链接分析,对客户合作网的结构进行分析,将具有相同标志并与同一个代理人实体合作的客户归为一个客户实体,并把具有相同合作对的信息加以分析合并;最后通过原子团簇分析法进行聚类分析。仿真实验结果表明,所提改进算法对中文字符串的匹配处理进行了优化,执行效率高,适合于以大量数据为特征的保险领域的重名消解。 This paper researched the solution to customer name disambiguation of the field of insurance. Aiming at the former name disambiguation methods such as text clustering method need to be considered in a lot of useless words, manually set the threshold, and gave he numbers of type, and the method of character-related properties of similarity based on information extraction depends on the character information, proposed a new name disambiguation method. Firstly, applied the same attribute matching, merging the identity of a successful match and then used link analysis, analyzed structural analysis of customers network, the entities had the same identity and classified cooperate with the same policy to a customer entity, merged the same cooperating information. Finally, analyzed cluster analysis cluster. Experiment results show that the proposed method can optimize the chinese text string matching process and have the high implementation efficiency, especially suitable for large amounts of data to the insurance sector is characterized by digestion of the same name.
作者 姚宇峰
出处 《计算机应用研究》 CSCD 北大核心 2012年第3期994-997,共4页 Application Research of Computers
基金 常熟理工学院青年教师科研启动基金资助项目(QZ0912)
关键词 重名消解 数据挖掘 保险领域 实体 name disambiguation data mining insurance field entity
  • 相关文献

参考文献6

二级参考文献7

共引文献36

同被引文献32

  • 1Golubin A Y. Pareto-optimal insurance policies in the models with a premium based on the actuarial value[J]. Journal of Risk and Insurance, 2006,73(6):469-487..
  • 2Shen Wei,Wang Jianyong,Han Jiawei.Entity linking with a knowledge base:issues,techniques,and solutions[J].IEEE Trans on Knowledge and Data Engineering,2014,27(2):443-460.
  • 3Shen Wei,Wang Jianyong,Luo Ping,et al.LINDEN:linking named entities with knowledge base via semantic knowledge[C]//Proc of the 21st International Conference on World Wide Web.2012.
  • 4Guo Yuhang,Qin Bing,Li Yuqin,et al.Improving candidate generation for entity linking[C]//Proc of Natural Language Processing and Information Systems.2013:225-236.
  • 5Guo Yuhang,Qin Bing,Liu Ting,et al.Microblog entity linking by leveraging extra posts[C]//Proc of Conference on Empirical Methods in Natural Language Processing.2013.
  • 6Shen Wei,Wang Jianyong,Luo Ping,et al.Linking named entities in Tweets with knowledge base via user interest modeling[C]//Proc of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2013:68-76.
  • 7Blei D M,Ng A Y,Jordan M I.Latent dirichlet allocation[J].The Journal of Machine Learning Research,2003,3(1):993-1022.
  • 8Han Xianpei,Sun Le.An entity-topic model for entity linking[C]//Proc of Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning.[S.l.]:Association for Computational Linguistics,2012.
  • 9Li Yang,Wang Chi,Han Fangqiu,et al.Mining evidences for named entity disambiguation[C]//Proc of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2013.
  • 10Newman D,Chemudugunta C,Smyth P.Statistical entity-topic models[C]//Proc of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Philadelphia,PA,USA:ACM Press,2006:680-686.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部