期刊文献+

基于DCT和线性回归的人脸识别 被引量:11

Face recognition based on DCT and linear regression
下载PDF
导出
摘要 由于人脸图像常常因光照、姿态、表情变化及遮挡等因素的影响而具有非线性结构,在空间域直接使用线性方法就有其局限性。为此,提出了一种基于离散余弦变换和线性回归分类的人脸识别方法:通过离散余弦变换获取人脸图像的变换域特征,以减小光照、姿态变化等影响,然后再利用快速有效的线性回归方法得到识别结果。通过在几个常用人脸数据库上的测试结果表明,该方法在满足实时性的同时,能有效地增强面对这些问题的鲁棒性。 The performance of face recognition was limited when linear methods were used directly in spatial domain because face images own nonlinear structure when influenced by variations in illumination,pose,expression,and occlusion.To overcome the problem,this paper proposed a method based on discrete cosine transform and linear regression classification for face recognition.First it got the features in transform domain through discrete cosine transform,which purpose was to decrease the effect of variations in illumination,pose and so on,and employed then the fast and efficient linear regression method to produce the recognition results.The experiment results on several common face databases show that the proposed method is more robust in the case of real-time recognition is satisfied when confront these problems.
出处 《计算机应用研究》 CSCD 北大核心 2012年第3期1123-1126,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60975001 61172121) 天津市应用基础与前沿技术项目(10JCYBJC07700) 国家教育部博士点基金资助项目(20090032110028) 国家教育部新世纪优秀人才支持计划项目(NCET-10-0620)
关键词 人脸识别 线性回归 离散余弦变换 face recognition linear regression DCT(discrete cosine transform)
  • 相关文献

参考文献15

  • 1PANG Yan-wei, YUAN Yuan, LI Xue-long. Gabor-based region co- variance matrices for face recognition [ J]. IEEE Xrans on Circuits and Systems for Video Technology,2008,18 (7) : 989- 993.
  • 2TURK M, PENTLAND A. Eigenfaces for recognition[ J]. Cognitive Neuroscience, 1991,3( 1 ) :71-86.
  • 3BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997,19(7) :711-720.
  • 4HAFED Z M, LEVINE M D. Face recognition using the discrete co-sine transform [ J ]. International Journal of Computer Vision, 2001,43 (3) :167-188.
  • 5RAMASUBRAMANIAN D, VENKATESH Y V. Encoding and recog- nition of faces based on the human visual model and DCT[ J]. Pat- tern Recognition, 2001,34 (12) :2447-2458.
  • 6NASEEM I, TOGNERI R, BENNAMOUN M. Linear regression for face recognition[ J]. IEEE Trans on Pattern Analysis and Ma- chine Intelligence,2010,32( 11 ) : 2106-2112.
  • 7WRIGHT J, YANG A Y, GANESH A,et al. Robust face recognition via sparse representation[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2009,31 (2) :210-227.
  • 8BARSI R, JACOBS D. Lambertian reflection and linear subspaces [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003,25(2) :218-233.
  • 9尹洪涛,付平,沙学军.基于DCT和线性判别分析的人脸识别[J].电子学报,2009,37(10):2211-2214. 被引量:40
  • 10GEORGHIADES A, BELHUMEUR P, KRIEGMAN D. From few to many:iiiumination cone models for face recognition under variable lighting and pose[J]. IEEE Tmns on Pattern Analysis and Ma- chine Intelligence,2001,23(6) : 643-660.

二级参考文献8

  • 1L Sirovich,M Kirby. Appfication of Karhunen-Loeve procedure for the characterization of human faces[ J ]. IEEE Trans Pattern Analysis and Machine Intelligence, 1990,3( 1 ) :71 - 79.
  • 2M Turk, A Pentland. Eigenfaces for recognition[ J]. Journal of Cognitive Neuroscience, 1991,3( 1 ) : 72 - 86.
  • 3D L Swets, J Y Weng. Using discriminant eigenfeatures for image retdeval[ J ]. IEEE Trans Pattern Analysis and Machine Intelligence, 1996,18(8) : 831 - 836.
  • 4P N Belhumeur, J P Hespanha, D J Kriegman. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection[ J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1997,19 (7) :711 - 720.
  • 5Z M Hafed, M D Levine. Face recognition using the discrete cosine transform[ J ].International Journal of Computer Vision, 2001,43(3) : 167 - 188.
  • 6D Ramasubramanian, Y V Venkatesh. Encoding and recognition of faces based on the human visual model and DCT[ J]. Pattern Recognition, 2001,34(12) :2447 - 2458.
  • 7W Chen, J E Meng, S Wu. PCA and LDA in DCT domain [ J]. Pattern Recognition Letters,2005,26(15) :2474 - 2482.
  • 8张燕昆,刘重庆.一种新颖的基于LDA的人脸识别方法(英文)[J].红外与毫米波学报,2003,22(5):327-330. 被引量:16

共引文献39

同被引文献77

  • 1周建中,何良华.基于DWT-DCT-SVM的人脸表情识别[J].数据采集与处理,2006,21(1):64-68. 被引量:10
  • 2韩柯,朱秀昌,王汇源.基于ICA与BP神经网络相结合的人脸识别研究[J].信息技术与信息化,2006(2):50-52. 被引量:4
  • 3Yang J,Frangi A F,Yang J,et aI.KPCA plus LDA:a com- plete kernel Fisher discriminant framework for feature extrac- tion and recognition[J].IEEE Transactions on Pattern Analy- sis and Machine Intelligence, 2005,27(2) : 230-244.
  • 4Naseem I, Togneri R, Bennamoun M.Linear regression for face recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence02010,32( 11 ) :2106-2112.
  • 5Naseem I, Togneri R, Bennamoun M.Robust regression for face recognition[J].Pattern Recognition, 2012,45 ( 1 ) : 104-118.
  • 6Huang S M, Yang J F.Improved principal component regres- sion for face recognition under illumination variations[J]. IEEE Signal Processing Letters,2012,19(4) : 179-182.
  • 7邓洪波,金连文.一种基于局部Gabor滤波器组及PCA+LDA的人脸表情识别方法[J].中国图象图形学报,2007,12(2):322-329. 被引量:36
  • 8刘立.基于双核架构的嵌入式人脸识别系统.上海:上海交通大学,2012.
  • 9Lai J, Jiang X. Modular weighted global sparse representation for ro- bust face recognition. Signal Processing Letters, IEEE, 2012; 19 (9) : 571-574.
  • 10李静.基于样本扩展的稀疏表示鲁棒图像识别算法研究.秦皇岛:燕山大学,2012.

引证文献11

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部