期刊文献+

基于描述方法的SAR图像分割 被引量:3

SAR image segmentation based on description method
下载PDF
导出
摘要 针对减少SAR图像分割中自由参数的问题,提出了基于最小描述长度的SAR图像分割方法。该方法经对数变换将SAR图像乘性噪声转换为加性噪声,对其建立描述模型,在描述长度最短意义上计算出重建图像,在假设SAR图像各区域实际地物后向散射特性对应的像素值恒定的前提下,该重建图像即为SAR图像的分割结果。该方法在分割的同时很好地抑制了SAR图像的相干斑噪声,保留了原始SAR图像的区域边界,并且不需要参数调节,整个分割过程自动完成,是一种非监督SAR图像分割方法。给出了该方法的具体实现步骤,实验结果验证了该方法的有效性。 To reduce the free parameters for synthetic aperture radar (SAR) images segmentation, this paper proposed aunsupervised segmentation method based on the MDL for SAR images. This method firstly established statistical models for log-arithm version of SAR images,then calculated the underlying images in the sense of minimum description length, which werethe segmentation images of the original SAR images under the supposition of the underlying piece-wise constant images. Thegood segmentation results were obtained with the region boundaries preserved well and the speckle noise was restrained perfect-ly. The SAR image segmentation can automatically be carried out without tuning any parameter, so the method was an unsuper-vised SAR images segmentation technique. It gave the detailed implementation process of the method, and verified the perform-ance of the method by both synthetic SAR images and real SAR images.
出处 《计算机应用研究》 CSCD 北大核心 2012年第3期1169-1171,1200,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60872137)
关键词 合成孔径雷达图像分割 最小描述长度 熵编码 相干斑滤波 SAR image segmentation minimum description length(MDL) entropic code despeckling
  • 相关文献

参考文献12

  • 1LEE J S,JURKEVICH I. Segmentation of sar images[ J ]. I EEE Trans on Geoscience and Remote Sensing,1989, 27(6):674-680.
  • 2DU G,YEO T S. A novel launarity estimation method applied to SAR image segmentation[ J]. IEEE Trans on Geoscience and Remote Sensing ,2002,40(12) :2687-2691.
  • 3FJORTOFT R, MARTHON P, LOPES A, et al. An optimal multiedge detector for SAR image segmentation [ J ]. IEEE Trans on Geoscience and Remote Sensing, 1998,36(3 ) :793-802.
  • 4ZHU S C, YUILLE A. Region competition:unifying snakes, region growing, and Bayes/MDL for multiband image segmentation [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1996, 13(9) :884-900.
  • 5SMITS P C, DELLEPIANE S G. Diseontinuity-adaptive Markov random field model for the segmentation of intensity SAR images[J]. IEEE Tmns on Geoscience and Remote Sensing, 1999,37( 1 ) :793- 802.
  • 6RISSANEN J. Stochastic complexity in statistica inquiry [ M ]. Singa- pore : World Scientific, 1989:223-239.
  • 7SHANNON C E. A mathematical theory of communication[ J]. Bell System Technical deuma1,1948,27(7) :379-656.
  • 8OLIVER C, QUEGAN S. Understanding synthetic aperture radar image [ M ]. Boston: Arrech House, 1998 : 130.
  • 9LECLERC Y G. Constructing simple stable descriptions for image par- titioning [ J]. International Journal of Computer Vision, 1989,3 ( 1 ) :73-102.
  • 10VACHON P W. Spectral estimation techniques for multilook SAR image of oceanwaves [ J]. IEEE Trans on Geoscience and Remote Sensing, 1992,30(3 ) :568-577.

二级参考文献10

  • 1Leen-Kiat Soh and Costas tsatsoulis, Segmentation of satellite imagery of natural scenes using data mining[J].IEEE Trans. on Geosciencc and Remote Sensing, 1999,37(2): 1086-1099.
  • 2Venkatachalam V, Nowak R, Baraniuk R, and Figueiredo M A T. Unsupervised SAR image segmentation using recursive partitioning [A]. Proc. SPIE Conf. on Algorithms for Synthetic Aperture Radar Imagery [C], Orlando, FL,United States, 2000, Vol. 4053: 467-472.
  • 3Fjortoft R, Lopes A, Marthon P, and Cubero-Castan E. An optimal multiedge detector for SAR image segmentation[ J].IEEE Trans. on Geosci. Remote Sensing, 1998, 36(3): 793-802.
  • 4Forrest S, et al. Self-nouself discrimination in a computer [A]. Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy[C]. Los Alamitos, CA: IEEE Computer Society Press, 1994: 202-212.
  • 5边肇祺,张学工,等.模式识别[M].北京:清华大学出版社,1999,第二章.
  • 6Sahoo P K, A survey of threshold techniques[J], Computer Vision Graphics Image Process, 1988, 41(2): 233-260.
  • 7王磊,潘进,焦李成.免疫算法[J].电子学报,2000,28(7):74-78. 被引量:351
  • 8曹先彬,罗文坚,王煦法.基于免疫网络调节的改进遗传算法[J].高技术通讯,2000,10(10):23-27. 被引量:22
  • 9刘振华,毛士艺,袁运能.SAR图像组合分割算法[J].电子学报,2003,31(6):833-836. 被引量:3
  • 10汪西莉,刘芳,焦李成.一种分层马尔可夫图像模型及其推导算法[J].软件学报,2003,14(9):1558-1563. 被引量:18

共引文献5

同被引文献67

  • 1PAL N R, PAL S K. A review on image segmentation techniques [ J ]. Pattern Recognition, 1993,26 ( 9 ) : 1277-1294.
  • 2DUDA R O, HART P E, STORK D G. Pattern classification [ M ]. 2nd ed. New York : Wiley Interscience, 2000 : 10- 30.
  • 3FAN Jian-ping, ZENG Gui-hua, BODY M, et al. Seeded region growing: an extensive and comparative study [ J ]. Pattern Recogni-tion Letters ,2005,26 (12) : 1139-1156.
  • 4JACOBS D W, WEINSHALL D, GDALYAHU Y. Classification with nonmetric distances: image retrieval and class representation [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 20]0,22(6) :583-600.
  • 5YU S X, LEE T S, KANADE T. A hierarchical Markov random field model for figure-ground segregation [ C ]//Lecture Notes in Computer Science, vol 2134. Berlin: Springer,2011 : 118-130.
  • 6WANG X, GRIMSON E. Spatial latent Dirichlet allocation [ J ]. Ad- vances in Neural Information Processing Systems, 2007, 34 (8) :10-20.
  • 7SHI J, MALIK J. Normalized cuts and image segmentation[J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2010,32 (4) :888-905.
  • 8TREdEAU A, COLANTONI P. Regions adjacency graph applied to color image segmentation[ J]. I EEE Trans on Imago Processing, 2010,9(3) :735-744.
  • 9BOYKOV Y, VEKSLER O, ZABIH R. Fast approximate energy mini- mization via graph cuts[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence ,2011,33 ( 11 ) : 1222-1239.
  • 10DING Jui-di, MA Ru,ning, CHEN Song-can. A scale-based connected coherence tree algorithm for image segmentation[ J]. IEEE Trans on Image Processing,2008,17(2) :204,216.

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部