摘要
经典的核密度估计背景模型使用固定的背景样本邻域来抑制背景运动形成的伪目标,无法适应不同背景的运动规律,导致不能抑制同一拍摄场景中所有背景运动形成的伪目标。因此在经典核密度估计的背景建模基础上,使用图像配准技术,能实现对不同运动背景区域的邻域尺寸自适应选择,并且在同一拍摄场景中可适应更多的背景运动类型,抑制更多类型的伪目标。实验结果证明,该方法对大部分由背景运动导致的伪目标有很好的抑制作用。
In classical kernel density estimation, using displacement probability with a small fixed window size to suppress faketarget, which caused by moving background. But fixed window size can not adapt to different movement of background. This pa-per designed and implemented a novel method based on background modeling with kernel density estimation. This method couldachieve window size' s adaptive selection. In the same filming scene, it could adapt to more moving background type and sup-press many kinds of fake target. Also the method used the technology of image registration. Experiment shows that this methodcan effectively suppress mostly false detection which caused by moving background.
出处
《计算机应用研究》
CSCD
北大核心
2012年第3期1188-1190,共3页
Application Research of Computers
关键词
动态目标分割
核密度估计
图像配准
图像分割
dynamic object segmentation
kernel density estimation
image registration
image segmentation