期刊文献+

基于自适应邻域的核密度动态目标分割方法

Method for dynamic object segmentation with kernel density estimation based on self-adaption neighborhood
下载PDF
导出
摘要 经典的核密度估计背景模型使用固定的背景样本邻域来抑制背景运动形成的伪目标,无法适应不同背景的运动规律,导致不能抑制同一拍摄场景中所有背景运动形成的伪目标。因此在经典核密度估计的背景建模基础上,使用图像配准技术,能实现对不同运动背景区域的邻域尺寸自适应选择,并且在同一拍摄场景中可适应更多的背景运动类型,抑制更多类型的伪目标。实验结果证明,该方法对大部分由背景运动导致的伪目标有很好的抑制作用。 In classical kernel density estimation, using displacement probability with a small fixed window size to suppress faketarget, which caused by moving background. But fixed window size can not adapt to different movement of background. This pa-per designed and implemented a novel method based on background modeling with kernel density estimation. This method couldachieve window size' s adaptive selection. In the same filming scene, it could adapt to more moving background type and sup-press many kinds of fake target. Also the method used the technology of image registration. Experiment shows that this methodcan effectively suppress mostly false detection which caused by moving background.
出处 《计算机应用研究》 CSCD 北大核心 2012年第3期1188-1190,共3页 Application Research of Computers
关键词 动态目标分割 核密度估计 图像配准 图像分割 dynamic object segmentation kernel density estimation image registration image segmentation
  • 相关文献

参考文献7

  • 1STAUFFER C, GRIMSON W E models for real-time tracking [ C ] L. Adaptive background mixture //Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. [ S. I. ] IEEE Computer Society, 1999:246- 252.
  • 2AHMED E, RAMANI D. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance [ J ]. Proceeding of the IEEE ,2002,90(7 ) : 1151-1163.
  • 3GOSHTASBY A A. 2-D and 3-D image registration for medical,remote sensing and industrial applications[ M ]. New York :Wiley,2005.
  • 4冈萨雷斯.数字图像处理[M].北京:电子工业出版社,2007.
  • 5DENG Yi-ning,KENNEY C,MOORE M S,et al. Peer group filtering and perceptual color image quantization[ J ]. IEEE Trans on Pattern Analysis and Machine intelligence, 1999,21 (7) :21.
  • 6DENG Yi-ning, MANJUNATH B S. Unsupervised segmentation of color-texture regions in images and video[ J ]. IEEE Trans on Pat- tern Analysis and Machine Intelligence,2001,23(8 ) :800-810.
  • 7SMITH S M,BRADY J M. SUSAN:a new approach to low level image processing [ J ]. International Journal of Computer Vision, 1997, 23( 1 ) :45-78.

共引文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部