期刊文献+

从中文Web网页中获取实体简称的研究 被引量:3

Extracting Abbreviated Names for Chinese Entities from the Web
下载PDF
导出
摘要 简称是自然语言词汇的重要组成部分,其获取是自然语言处理中的一个基本而又关键的问题。提出了一种根据汉语全称从Web中获取对应汉语简称的方法。该方法包括获取和验证两个步骤。获取步骤通过选择查询模式从Web上获得候选简称集合。为了验证候选简称,定义了全简称关系约束,分别定性和定量地表示全称和对应简称之间的约束,构建了全简称关系图来表示所有全称和简称之间的联系,在验证过程中,先分别用约束公理和关系图对候选简称进行过滤,再用约束函数对候选简称分类,并以分类类别、语料标记和约束函数值作为属性构建决策树,利用决策树对候选简称进行验证。实验结果表明,获取方法的最终准确率为94.63%,召回率为84.09%,验证方法的准确率为94.81%。 Abbreviations are the essential parts of the vocabularies in natural language, therefore, acquiring abbreviations is a basic and significant task of natural language processing. We proposed a method of extracting abbreviations for the given Chinese full names from the Web. The method has two phases:candidate abbreviations extraction and verification. In the extraction phase,we constructed query items to issue to Google and saved the results as the corpora, from which we extracted candidate abbreviations. In the verification phase, we defined a full names/abbreviations relations constraints, which includes a group of constraint axioms and a group of constraint functions. We built a relation graph to reflect the connection of all the full names and the abbreviations. In the process of verifying, the incorrect ones could be filtered out using the constraint axioms and the relation graph the candidate abbreviations could be classified with the constraint functions, and the incorrect ones could be identified through a classifier, which was trained using the types of the candidate abbreviations, the values of the functions and the tags in the corpora. Comprehensive experiments show that the precision and recall rate of extracting abbreviation extraction are 94. 63% and 84. 09%, respectively, and the precision of candidate verification is 94. 81%.
出处 《计算机科学》 CSCD 北大核心 2012年第3期174-182,195,共10页 Computer Science
基金 国家自然科学基金(61173063 61035004) 国家社科基金(10AYY003)资助
关键词 自然语言处理 简称获取 约束公理 约束函数 关系图 Natural language processing, Abbreviation acquisition, Constraint axioms, Constraint functions, Relation group
  • 相关文献

参考文献11

  • 1刘磊,曹存根,张春霞,田国刚.概念空间中上下位关系的意义识别研究[J].计算机学报,2009,32(8):1651-1661. 被引量:14
  • 2崔世起,刘群,林守勋,等.中文缩略语自动抽取初探[C].全国第八届计算语言学联合学术会议JSCL-2005).北京:清华大学出版社,2005:53-57.
  • 3谢丽星,孙茂松,佟子健,等.基于用户查询日志和锚文字的汉语缩略语识别[C]∥中国计算机语言学研究前沿进展,2009.烟台:清华大学出版社,2009:551-556.
  • 4武子英,郑家恒.现代汉语缩略语自动识别的方法研究[J].计算机工程与设计,2007,28(16):4052-4054. 被引量:8
  • 5Tian Guogang, Cao Cungen, Liu Lei, et al. MFC: A Method of Co-referent Relation Acquisition from Large-Scale Chinese Corpora[C]//Proceedings of the ICNC' 06-FSKD' 06. Xi' an, China, 2006 : 1256-1261.
  • 6Guang Jiang, Cao Cungen, Sui Yuefei, et al. A General Approach to Extracting Full Names and Abbreviations for Chinese Entities from the Web[C]//IFIP Advances in Information and Communication Technology. Manchester, UK, 2010 : 271-280.
  • 7支流,段慧明,朱学锋,等.中文缩略语知识库建设[C].见:第3届学术计算语言学研讨会论文集.2006:316-320.
  • 8鲍明凌,亢世勇.基于数据库的现代汉语新词语缩略语的研究[C]∥第一届学生计算语言学研讨会论文集,2002.北京:中文信息学会,2002:233-238.
  • 9HanJia-wei,KamberM数据挖掘概念与技术(第2版)[M].范明,孟小峰,译.北京:机械工业出版社,2007:188-200.
  • 10田国刚.受限中文语料的自监督文本知识获取研究[D].北京:中国科学院计算技术研究所,2007.

二级参考文献11

  • 1李国臣,罗云飞.采用优先选择策略的中文人称代词的指代消解[J].中文信息学报,2005,19(4):24-30. 被引量:33
  • 2张振亚,王进,程红梅,王煦法.基于余弦相似度的文本空间索引方法研究[J].计算机科学,2005,32(9):160-163. 被引量:55
  • 3卢志茂,刘挺,李生.统计词义消歧的研究进展[J].电子学报,2006,34(2):333-343. 被引量:28
  • 4崔世起,刘群,林守勋,等.中文缩略语自动抽取初探[C].全国第八届计算语言学联合学术会议JSCL-2005).北京:清华大学出版社,2005:53-57.
  • 5Serguei Pakhomov,Mayo Foundation,Rochester.Semi-supervised maximum entropy based approach to acronym and abbreviation normalization in medical texts[C].Philadelphia:40th Annual Meeting of the Association for Computational Linguistics(ACL 2002),2002:160-167.
  • 6Wee Meng Soon,Hwee Tou Ng.A machine learning approach to coreference resolution of noun phrases[J].Computational Linguistics,2001,27(4):521-544.
  • 7Vincent Ng,Claire Cardie.Improving machine learning approaches to coreference resolution[C].Philadelphia:40th Annual Meeting of the Association for Computational Linguistics (ACL),2002:104-111.
  • 8支流,朱学锋,段慧明,等.中文缩略语还原技术初探[C].全国第八届计算语言学联合学术会议JSCL-2005),北京:清华大学出版社,2005:600-602.
  • 9Akira Terada,Takenobu Tokunaga,Hozumi Tanaka.Automatic expansion of abbreviations by using context and character information[EB/OL].http://tanaka-www.cs.titech.ac.jp/publication/archive/286.pdf.
  • 10鲁松,白硕,黄雄.基于向量空间模型中义项词语的无导词义消歧[J].软件学报,2002,13(6):1082-1089. 被引量:37

共引文献29

同被引文献36

  • 1吴汉江.关于现代汉语通称词的几个问题[J].语文学刊(高等教育版),2004(4):63-65. 被引量:2
  • 2史忠植,董明楷,蒋运承,张海俊.语义Web的逻辑基础[J].中国科学(E辑),2004,34(10):1123-1138. 被引量:71
  • 3王海涛,曹存根,高颖.基于领域本体的半结构化文本知识自动获取方法的设计和实现[J].计算机学报,2005,28(12):2010-2018. 被引量:31
  • 4张德政,庄洪波.基于领域本体网络模型的知识获取技术[J].计算机工程,2007,33(7):190-191. 被引量:16
  • 5谢丽星,孙茂松,佟子健,等.基于用户查询日志和锚文字的汉语缩略语识别[C]∥中国计算机语言学研究前沿进展,2009.烟台:清华大学出版社,2009:551-556.
  • 6田国刚.受限中文语料的自监督文本知识获取研究[D].北京:中国科学院计算技术研究所,2007.
  • 7Okazaki N, Ananiadou S, Tsujii J. A discriminative alignment model for abbreviation recognition [C] //Proceedings of the 22nd International Cor:erence on Computational Linguistics, 2008.
  • 8Stevenson Mark, Guo Yikun, Abdulaziz AI Amri, et al. Disam- biguation of biomedical abbreviations [C] //Proceedings of the Workshop on BioNLP, 2009.
  • 9YANG Hua, HONG Yu, HUA Zhenwei, et al. Combination method of rules and statistics for abbreviation and its full name recognition [C]//Proceedings of the International Conference on Informatics, Cybernetics, and Computer Engineering, 2012: 707-714.
  • 10Freund Y, Mason L. The alternating decision tree learning al- gorithm [C] //Proceeding of the Sixteenth International Con- ference on Machine Learning, 1999: 124.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部