期刊文献+

基于GPU的全源最短路径算法 被引量:3

GPU-based Algorithm of Shortest Path
下载PDF
导出
摘要 针对有向图中每对顶点之间的最短路径问题,基于CPU集群并行算法,根据GPU并行计算加速机制,提出了基于棋盘划分方式的GPU并行算法,以增加算法的并行性与数据的局部性。当有向图规模超过GPU显存限制时,进一步提出了异步并行处理的GPU最短路径算法。实验结果表明,与CPU上单核算法相比,本算法具有如下加速效果:(1)对于节点数少于10000的小规模有向图,可以实现约155倍的加速;(2)对于节点数超过10000的大规模有向图,可实现约25倍的加速。 As for the all-pairs shortest-path problem in the graph, based on parallel algorithm in the CPU cluster environment, depending on parallel speedup mechanism on the GPU, in order to increase the parallelism and locality, chessboard division method was chosen for task division in this parallel algorithm on the GPU. Because the graph scale is larger than the display memory, the asynchronous parallel algorithm on the GPU was presented. The experimental data proves that the algorithm has accelerating effects below compared with CPU with single core: first, for the small graph whose vertexes are less than 10000, it is about 155 times faster; second, for the large graph whose vertexes are more than 10000,it is about 25 times faster.
出处 《计算机科学》 CSCD 北大核心 2012年第3期299-303,共5页 Computer Science
基金 国家"863"高技术研究发展计划(2009AA01Z126) 国家自然科学基金(60876025)资助
关键词 全源最短路径 GPU 棋盘划分 FLOYD算法 Shortest-path,GPU,Chessboard division, Floyd
  • 相关文献

参考文献13

  • 1Floyd RW. Algorithm97(SHORTEST PATH)[J]. Communications of the ACM, 1962.
  • 2Lawler E L. Combinatorial Optimization: Networks and Matrodis[M]//Holt, Rinehart and Winston, 1976.
  • 3Harish P, Narayanan P J. Accelerating large graph algorithms on the GPU using CUDA[C]///Proc. 14th Int'l Conf. High Performance Computing (HiPC'07). Dec. 2007:197-208.
  • 4Okuyama T, Ino F, Hagihara K. A Task Parallel Algorithm for Computing the Costs of All-pairs Shortest Paths on the CUDA Compatible GPU[C]//Proceedings of 2008 IEEE International Symposium on Parallel and Distributed Processing with Applications. IEEE, 2008 : 284-291.
  • 5Katz G J,Kider J T,Jr. All--pairs shortest-paths for large graphs on the GPU[C]//Proe. of the 23rd ACM.
  • 6周益民,孙世新,田玲.一种实用的所有点对之间最短路径并行算法[J].计算机应用,2005,25(12):2921-2922. 被引量:16
  • 7Cormen T H, Leiserson C E, Rivest R L, et al. Introduction to Algorithms(Second Edition)[M].The MIT Press,2001.
  • 8Breshears C. The Art of Concurrency[M]. O'Reilly Media, Inc, 2001.
  • 9张树,褚艳利.高性能运算之CUDA[M].北京:中国水利出版社,2009.
  • 10卢风顺,宋君强,银福康,张理论.CPU/GPU协同并行计算研究综述[J].计算机科学,2011,38(3):5-9. 被引量:95

二级参考文献7

共引文献109

同被引文献19

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部