摘要
卷积公式有离散型随机变量和连续性随机变量两种形式.文章介绍了卷积公式的另外一种证法,并用其证明了一些分布的可加性,尤其强调了可加性中随机变量相互独立的条件必不可少。
Formula for convolution has two forms of discrete random variable and continuous random variable.In this paper we give another proof of convolution formula,and then prove the additive property for a few important distributions with it,especially emphasize on the condition of independence.
出处
《安顺学院学报》
2011年第6期134-136,共3页
Journal of Anshun University
关键词
随机变量
卷积公式
随机变量的独立性
条件数学期望
Two-dimensional random variables
Convolution formula
The independence of random variable
Conditional mathematical expectation.