期刊文献+

非线性项依赖于导数的二阶奇异微分方程初值问题的无界正解

UNBOUNDED POSITIVE SOLUTIONS FOR INITIAL VALUE PROBLEMS OF SINGULAR SECOND-ORDER DIFFERENTAIL EQUATIONS WITH NONLINEARITIES DEPENDING DERIVATIVE
原文传递
导出
摘要 通过建立特殊的Banach空间,利用锥上的不动点指数理论,研究了非线性项依赖于导数的二阶奇异微分方程初值问题无界正解的存在性.该文推广了前人的结果. By a special Banach space,using the fixed point index theory in a cone, the existence of unbounded positive solutions is proved for initial value problems of singular second-order differentail equation with nonlinearities depending derivative.The result is an improvement of existing corresponding results.
作者 闫宝强 高丽
出处 《系统科学与数学》 CSCD 北大核心 2011年第12期1673-1689,共17页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金资助项目(10571111) 山东省自然科学基金资助项目(Y2005A07)
关键词 初值问题 不动点指数 奇异性 Initial value problems fixed point index singularity
  • 相关文献

参考文献4

二级参考文献18

  • 1[1]Ravi P. Agarwal, Donal O'Regan, Second-Order Initial Value Problems of Singular Type [J], Journal of Mathematical Analysis and Applications, 1999, 229: 441-451.
  • 2[2]DeimlinE K., Nonlinear Funcational Analysis [M], New York: Springer, 1985.
  • 3O'Regan D. The Theory of Singular Boundary Value Problems. Singapore: World Scientific Press,1994.
  • 4Bobisud L E, O'Regan D. Existence of Solutions to some Singular Initial Value Problems. J. Math.Anal. Appl., 1998, 133:214-230.
  • 5Agarwal R P, O'Regan D. Positive Solutions to Singular Initial Value Problems with Sign Changing Nonlinearities. Math. Cmput. Modelling, 1998, 28(3): 31-39.
  • 6Agarwal R P, O'Regan D. Second-order Initial Value Problems of Singular Type. J. Math. Anal.Appl., 1999, 229:441-451.
  • 7Guo D, Lakshmikantham V, Liu X Z. Nonlinear Integral Equations in Abstract Spaces. Dordrecht:Kluwer Academic Publisher, 1996.
  • 8Guo Dajun. Nonlinear Functional Analysis. Jinan: Shandong Science and Technology Publishing House, 1985.
  • 9O'Regan D, Some existence principles and some general results for singular nonlinear two point boundary value problems, J Math. Anal. Appl., 1992. 166:24-40.
  • 10O'Regan D, Agarwal R P, Singular problems: an upper and lower solution approach, J Math. Anal. Appl.,2000, 251: 230-250.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部