期刊文献+

一致凸Banach空间中非扩张映射的新不动点定理

New fixed point theorems of nonexpansive mappings in uniformly convex banach spaces
下载PDF
导出
摘要 利用非扩张映射的非线性二择一性质,得到了一致凸Banach空间中非扩张映射的若干新不动点定理,从而推广了著名的非扩张映射Altman定理、Roth定理和Petryshyn定理. By means of nonlinear alternative for nonexpansive mappings,some new fixed point theorems of nonexpansive mappings are obtained.As a result,the famous Altman′s theorem,Roth′s theorem and Petryshyn theorem for such class of mappings are generalized.
出处 《纺织高校基础科学学报》 CAS 2011年第4期525-529,共5页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目(10961003)
关键词 非扩张映射 非线性二择一 不动点 一致凸BANACH空间 nonexpansive mapping nonlinear alternative fixed point uniformly convex Banach space
  • 相关文献

参考文献9

  • 1GRANAS A, DUGUNDJI J. Fixed point theory[M]. New York: Springer-Verlag, 2003 : 10-99.
  • 2AGARWAL R P, MEEHAN M,O'REGAN D. Fixed point theory and applications[M]. Cambridge:Cambridge Univer- sity Press,Beijing World Publishing Corporation, 2001.
  • 3FRIGON M. On continuation methods for contractive and nonexpansive mappings[M]. Sevilla: Recent Advances in Metric Fixed Point Theory, Universidad de Sevilla, 1996:19-30.
  • 4O'REGAN D. Fixed point theorems for nonlinear operators[J]. J Math Anal Appl, 1996,202:413-432.
  • 5MEEHAN M,O'REGAN D. Multiple nonnegative solutions of nonlinear integral equations on compact and semi-infi- nite intervals[J]. Applieable Anal, 2000,74: 413-427.
  • 6MARTIN R H. Differential equations on closed subsets of a Banach spaces[J]. Trans Amer Math Soc, 1973,179:399- 414.
  • 7DEIMLING K. Nonlinear functional analysis[M]. New York: Springer-Verlag, 1985 : 121-135.
  • 8周银英,曹建涛,何震.可数个非扩张映射族公共不动点的收敛[J].数学的实践与认识,2009,39(20):193-198. 被引量:1
  • 9刘奇飞,邓磊.凸度量空间中非扩张映象的不动点迭代[J].西南大学学报(自然科学版),2010,32(8):120-122. 被引量:4

二级参考文献27

  • 1熊明,王绍荣,杨泽恒.Banach空间中几乎渐近非扩张型映象不动点的迭代逼近问题[J].四川大学学报(自然科学版),2007,44(3):485-489. 被引量:5
  • 2Xu H K. Inequalities in Banaeh spaces with applieations[J]. Nonl Artal,1991,16:1127-1138.
  • 3Nakajo K, Shimoji K, Takahashi W. Strong convergence theorems by the hybrid method for families of nonexpansive mappings in a Hilbert spaces[J]. Taiwan Residents J Math, 2006,10:339-360.
  • 4Wittmann R. Appoximation of fixed points of nanexpansive mapping[J]. Arch Math, 1992, 58:486-491.
  • 5Jean Philippe, Chancelier, Iterative schemes for computing fixed point of nanexpansive mappings in Banach space[J]. Jour Comp Appl Math,2009,353:141-153.
  • 6Chang S S, Chen Y Q, Cho Y J, Lee B S. Fixed point theorems for nonexpansive operators with dissipative perturbations in cones[J]. Comm Math Univ Caro, 1998,39(1):49-54.
  • 7Benlong Xu. Fixed point iteratios for asymptotically nonexpansive mapping in Banach space[J]. Jour Comp Appl Math, 2002,267:444-453.
  • 8Liu Qihou. Iteration sequences for asymptotically quasi-nonexpansive mapping with an error member of uniform Banach space[J]. Jour Comp Appl Math. 2002,266:468-471.
  • 9Sahu D R. Strong convergence theorems for nonexpansive type and non-self multi-valued mappings [J]. Nonl Anal, 1999,37:401-407.
  • 10Geobel K, Kirk W A. A fixed point thoerem for asymptotically nonexpansive mapping[J]. Proc Amer Math Soc, 1972,35(1):171-174.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部