摘要
设u,v是适合u>v,gcd(u,v)=1以及2|uv的正整数.运用初等数论方法讨论了方程(2uv)x+(u2-v2)y=(u2+v2)z的正整数解(x,y,z),证明了当(u,v)≡(1,6),(2,5),(5,2),(6,1)(mod 8)时,该方程仅有正整数解(x,y,z)=(2,2,2).
Let u,v be positive integers such that uv,gcd(u,v)=1 and 2|uv.In this paper,using some elementary number theory methods,the positive integer solutions(x,y,z) of the equation(2uv)x+(u2-v2)y=(u2+v2)z are discussed,and it is proved that if(u,v)≡(1,6),(2,5),(5,2) or(6,1)(mod 8),then the equation has only the positive integer solution(x,y,z)=(2,2,2).
出处
《纺织高校基础科学学报》
CAS
2011年第4期557-559,共3页
Basic Sciences Journal of Textile Universities
基金
国家自然科学基金资助项目(11071194)