摘要
系统地研究了两个不同并行服务台的可修排队系统MAP/PH(M/PH)/2,其中两个不同的服务台拥有一个修理工.若其中一台处于修理状态,则另一台失效后就处于待修状态.利用拟生灭过程理论,我们首先讨论了两个服务台的广义服务时间的相依性,然后给出了系统的稳态可用度和稳态故障度,最后得到了系统首次失效前的时间分布及其均值.
This paper gives a detailed analysis of a repairoble queueing system MAP/PH x (M/PH)/2 with interdependent repairs, where there are two servers and one repairman in the system. If one server is in repairing state, the other server will wait for entering repair once it fails. By using quasi-birth-and-death (QBD) processes we first consider some interdependent properties of the service times between two servers. Then we give the stable availability and the stable failed frequency of the system. Finally, we give the distribution of the first failure time to the system and the associated mean.
出处
《系统科学与数学》
CSCD
北大核心
2000年第1期78-86,共9页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金
中国博士后科学基金
中国科学院王宽诚博士后工作奖励基金
关键词
排队系统
可修排队系统
拟生灭过程
相依修理
Multi-server queue, repairable queueing system, phase type distribution, Markovian arrival process, quasi-birth-and-death (QBD) process.