摘要
广泛用于各行各业的转子系统的稳定性问题一直倍受关注· 而在当今失稳多是由于一些非线性现象的出现所引起,这就对转子系统的设计提出了更高的要求:考虑非线性因素,避开会出现非线性现象的不稳定参数点或区域· 若仅知未知系统的系列时间序列(有可能被噪声污染),如何识别系统运动性态的变化?为了探讨此问题,在本文中通过对一单盘Jeffcott转子的研究,得出了利用随参数变化的时间序列分维数趋势图,可以很好地识别轴承_转子动力系统发生分岔时的临界参数·
The stable problem of rotor system, seen in many fields, has been cared for more. Nowadays the reasons of most losing stability are caused by nonlinear behaviors. This presents higher requirements to the designing of motor system: considering nonlinear elements, avoiding the unstable parameter points or regions where nonlinear phenomena will be presented. If a family of time series of the unbeknown nonlinear dynamical system can only be got (may be polluted by noise), how to identify the change of motive properties at different parameters? In this paper through the study of Jeffcott rotor system, the result that using the figures between the fractional dimension of time_serial and parameter can be gained, and the critical bifurcated parameters of bearing_rotor dynamical system can be identified.
出处
《应用数学和力学》
EI
CSCD
北大核心
2000年第2期126-130,共5页
Applied Mathematics and Mechanics
基金
西安交通大学研究生院博士学位论文基金