期刊文献+

动态模糊二叉决策树构造方法

A Method of Contruction for Dynamic Fuzzy Binary Decision Tree
下载PDF
导出
摘要 动态模糊数据分析是海量数据处理的核心课题之一.讨论了动态模糊决策树的属性算法,通过动态模糊二叉决策树的介绍,给出了动态模糊决策树中各结点以及各层对实例集划分之间的关系.由于划分格是对论域的划分,进一步定义了动态模糊划分格,给出了关于动态模糊决策树各层对实例集划分组成的集合的定理,并且证明了动态模糊决策树的各层对实例集的划分组成的集合既是一个线性有序集也是一个动态模糊划分格等. The dynamic fuzzy data analysis is one of the key topics for mass data. Now many researchers use fuzzy logic for analysis. This article discusses the properties algorithm of dynamic fuzzy decision tree. It gives the dynamic fuzzy binary decision tree and the relation between the nodes and the layers of the set of instances. The partition lattice is for the domain of discourse. It defines the dynamic fuzzy partition Lattice, and gives the theorems of Layers for the set of instances on the dynamic fuzzy decision tree. It proves that the set is a linearly ordered and that it is also dynamic fuzzy partition lattice.
作者 谢琳
出处 《南京师范大学学报(工程技术版)》 CAS 2011年第4期57-62,69,共7页 Journal of Nanjing Normal University(Engineering and Technology Edition)
基金 国家自然科学基金(60775045 61033013)
关键词 动态模糊格 动态模糊决策树 动态模糊二叉决策树 dynamic fuzzy lattice, dynamic fuzzy decision tree, dynamic fuzzy binary decision tree
  • 相关文献

参考文献12

  • 1Li Fanzhang. Dynamic Fuzzy Logic and Its Applications [ M ]. New York: Nova Science Publishers, 2008.
  • 2蔡晨.动态模糊决策树模型及应用研究[D].苏州:苏州大学计算机科学与技术学院,2008.
  • 3尹阿东,谢霖铨,龙誉,杨立东.动态决策树算法研究[J].计算机工程与应用,2004,40(33):103-105. 被引量:9
  • 4Kazuaki Aoki, Toshiharu Watanabe, Mineichi Kudo. Design of decision tree using class-dependent features subsets [ J ]. Systems and Computers in Japan, 2005, 36(4) : 37-47.
  • 5MARGARET H DUNHAM.数据挖掘教程[M].北京:清华大学出版社,2005:177-178.
  • 6孙超利,张继福.基于属性-值对的信息增益优化算法[J].太原科技大学学报,2005,26(3):199-202. 被引量:2
  • 7Yao Y Y, Yao J T. Granlar computing as a basic for consistent classification problems [ J ]. Communications of Institute of Information and Computing Machinery, 2002, 5(2) : 101-106.
  • 8李明仑,李凡长.动态模糊逻辑的格结构及其应用研究[J].计算机应用与软件,2007,24(9):122-123. 被引量:3
  • 9李明仑.基于动态模糊格的决策树理论及应用研究[D].苏州:苏州大学计算机科学与技术学院,2008.
  • 10Iun H Witten, Eibe Frank. Data Mining Paratical Machine Learning Tools and Techniques with Java Implementations[ M ]. Beijing: China Machine Press, 2003.

二级参考文献29

  • 1王家德.Fuzzy泛代数的理论框架[J].纯粹数学与应用数学,1999,15(3):1-7. 被引量:1
  • 2冯进.代数结构思想及其方法论意义[J].大自然探索,1998,17(4):120-124. 被引量:1
  • 3俞红.项目管理及其组织结构[J].商业经济与管理,2004(9):29-32. 被引量:26
  • 4曹高辉,王鑫鑫.网络经济下的企业组织结构变革[J].情报杂志,2004,23(10):84-86. 被引量:7
  • 5Quinlan J.R.. C4.5:Programs for Machine learning, Morgan Kaufmann publishers Inc., San Mateo,CA, 1993,1-302.
  • 6Quinlan,J.R. Learning Efficient Classification Procedures and Their Application to Chess End Games[J].In R.S. Michalski, J.G. Carbonell and T.M. Mitchell(Eds.),Machine Learning:An Artificial Intelligence Approach, Springer, Palo Alto,CA:Tioga, 1983,I,463-482.
  • 7Quinlan J.R..Induction of decision trees[J].Machine Learning, 1986,1,(1):81-106.
  • 8Tu Pei-lei, Chung Jen-yao . A new decision-tree classification algorithm for machine learning. In proceedings of the 1992 IEEE International Conference on Tools for Artificial Intelligence[J].Arlington, VA,1992,370-377.
  • 9Cios K J,Kurgan L A. Trends in Data Mining and Knowledge Discovery. In: Knowledge discovery in advanced information systems, Pal, N. R. , Jain, L. C. , Teoderesku N. eds. Springer,2002
  • 10H Liu,Motoda H. Feature Extraction, Construction and Selection: A Data Mining Perspective, Kluwer Academic, Boston:MA, 1998

共引文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部