期刊文献+

最强Orlicz-Pettis拓扑 被引量:3

The Strongest Orlicz-Pettis Topology
原文传递
导出
摘要 引进了lp(p≥1)空间的子集是本性紧概念,借此给出了抽象对偶系统(E,F)中最强Orlicz-Petits拓扑SOP(E,F)以及产生该拓扑的最大映射集族的表示.利用此结果搞清楚了现有两种Orlicz-Petits拓扑即Dierolf拓扑(M)和Twed-dle拓扑(E,T’)的确切意义以及它们之间的相互关系.指出了的最大性所蕴涵的理论意义和应用价值.证实了σ(F,E)-条件紧集和σ(F,E)-可数紧集都含于中。进而实质性地改进了矢位测度论中的Graves-Rness定理、抽象函数论中的Thomas定理等重要结果. By introducing the concept of essentially compact subsets of the spaces lp(p ≥ 1), the strongest Orlicz-Pettis topology and the largest mappings family F whichyielded this topology in abstract duality pair (E,F) are obtained. Through usingthese results, the relationship between Dierolf topology F(M*) and Tweddle toplogyT(E, T′) has been shown. It is also proved that both conditionally o(F, E)-sequentiallycompact subsets of F and o(F, E)-countably compact subsets of F belong to the largestmappings family f. Thus, some famous theorems, such as the Graves-Ruess theorem onvector measures, the Thomas theorem on abstract function theory, etc., are improvedsubstantially.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2000年第1期9-16,共8页 Acta Mathematica Sinica:Chinese Series
基金 黑龙江省自然科学基金 吉林省教委自然科学基金
关键词 本性紧 抽象对偶系统 O-P拓扑 最强O-P拓扑 Orlicz-Pettis topology Essentially compact Abstract duality pair
  • 相关文献

参考文献2

  • 1Li Ronglu,Studia Sci Math Hungar,1992年,27卷,373页
  • 2Li Ronglu,Publ L’institute Math,1991年,49卷,117页

同被引文献25

  • 1AARNES J. The Vitali:Hahn:Saks theorem for von Neumann algebras [J]. Math. Scan& , 1966 (18) : 87:92.
  • 2GLEASON A M. Measures on the closed subspaces of a Hilbert space [J]. J. Math. Mech. , 1957 (6) :885:893.
  • 3HABIL E D. Brooks:Jewett and Nikodym convergence theorems for orthoalgbras that have the weak subsequential interpola- tion property [J]. Internat. J. Theoret. Phys., 1995 (34): 465:491.
  • 4MAZARIO F G. Convergence theorems for topological group valued measures on effect algebras [J]. Bull. Austral. Math. Soc., 2001 (64): 213:231.
  • 5MORALES P. A non:commutative version of the Brooks:Jewett theorem [J]. Slovak. Acad. SCI. Bratislava, 1988:88 :92.
  • 6DE MARIA J L, MORALES P. A non:commutative version of the Nikodym boundedness theorem [J]. Atti Sem. Mat. Fis. Univ. Modena, 1994 (42): 505:517.
  • 7D'ANDREA A B, dE LUCIA P, MORALES P. The Lebesgue decomposition theorem and the Nikodym convergence theorem on an orthomodular poset [J]. Atti Scm. Mat. Fis. Univ. Modena, 1991 (39):73:94.
  • 8D'ANDREA A B, dE LUCIA P. the Brooks:Jewett theorem on an orthomodular lattice [J]. J. Math. Anal. Appl. , 1991 (154): 507:522.
  • 9MACKEY G W. The mathematical foundations of quantum mechanics [M]. New York:Benjamin Cummings, 1963.
  • 10DUNFORD N, SCHWARTZ J T. Linear operators, part I:general theory [M]. New York: John Wiley and sons, 1988.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部