摘要
引进了lp(p≥1)空间的子集是本性紧概念,借此给出了抽象对偶系统(E,F)中最强Orlicz-Petits拓扑SOP(E,F)以及产生该拓扑的最大映射集族的表示.利用此结果搞清楚了现有两种Orlicz-Petits拓扑即Dierolf拓扑(M)和Twed-dle拓扑(E,T’)的确切意义以及它们之间的相互关系.指出了的最大性所蕴涵的理论意义和应用价值.证实了σ(F,E)-条件紧集和σ(F,E)-可数紧集都含于中。进而实质性地改进了矢位测度论中的Graves-Rness定理、抽象函数论中的Thomas定理等重要结果.
By introducing the concept of essentially compact subsets of the spaces lp(p ≥ 1), the strongest Orlicz-Pettis topology and the largest mappings family F whichyielded this topology in abstract duality pair (E,F) are obtained. Through usingthese results, the relationship between Dierolf topology F(M*) and Tweddle toplogyT(E, T′) has been shown. It is also proved that both conditionally o(F, E)-sequentiallycompact subsets of F and o(F, E)-countably compact subsets of F belong to the largestmappings family f. Thus, some famous theorems, such as the Graves-Ruess theorem onvector measures, the Thomas theorem on abstract function theory, etc., are improvedsubstantially.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2000年第1期9-16,共8页
Acta Mathematica Sinica:Chinese Series
基金
黑龙江省自然科学基金
吉林省教委自然科学基金