摘要
本文证明了有限群G是Abel群当且仅当G_r满足下列条件:(Ⅰ) G有一个幂自同构 a使得 CG(a)是一个初等 AbelZ一群.(Ⅱ)G没有子群与2-群<a,b|a~2~n=b~2~m=1,a~b=a^(1+2)^(n-1)>同构,其中n≥3,n≥m.利用该结果,作者还证明若有限群G有一个幂自同构a使得C_G(a)是一个初等Abel2-群。
In this paper,it is shown that a finite group G is abelian if and only if G satisfies the following conditions : (Ⅰ) G has a power automorphism Q such that C_G(a) is an elementary abelian 2-group. (Ⅱ )G has no subgroup isomorphic to 2-group < a,b|a^2~n= b^2~m = 1,a^b = a^1+2^(n+1) > where n ≥ 3 and n≥m. In addition, applying the above result, the author also proves that if a finite group G has a power automorphism Q such that C_G(a) is an elementary abelian 2-group, then G is nilpotent.
出处
《数学杂志》
CSCD
2000年第1期55-59,共5页
Journal of Mathematics