摘要
设G_1与G_2是由光滑Tordan闭曲线界成的区域,f为G_1到G_2的μ(z)-同胚,当f的平均伸长函数由对数函数控制时,则f可拓扑地延拓到边界,记边界函数为 h,本文引进了由 h生成的拟对称函数ρ_h,利用模理论及极值长度方法,我们估计了拟对称函数的增长阶,得到一个双向不等式。
Let G_1 and G_2 be two domains bounded by smooth Jordan closed Curves, f be aμ(z)- homeomorphism from G_1 onto G_2. When the mean dilatation of f is Controled by logarithm founction, f can be topologically extend to the boundary. Denote the boundary function by h. In this paper, wi introduce qasi-symmetric function ρ_h which is generated by function h. Using modulus theory and extremal length method, We estimate the growt order of quasi-symmetric function adn obtain an inequality of both direction.
出处
《数学杂志》
CSCD
2000年第1期103-106,共4页
Journal of Mathematics
基金
国家自然科学基金
关键词
拟对称函数
增长阶
估值
同胚
约当曲线
μ(z)-homeomorphism
Jordan' s Curve
quasi-symmetric function
growth order