摘要
研究了有序 Banach空间中的算子方程 Lu =f (u)的可解性及单调迭代求解方法 ,其中 L为无界闭线性算子 ,f为非线性算子。建立了该方程解存在的上、下解定理 ,所得结果概括和统一了常微分方程 ,偏微分方程及抽象微分方程中的有关结果。
The paper makes a research for the solvability of the operator equation Lu=f(u) in a ordered Banach space.Here L is a unbounded closed linear operator,and f if a nonlinear operator.The supersolution and subsolution theorems for the equation are established.The conclusions generalize and unify the relevant results in ordinary differential equations,partial differential equations and abstract space differential equatins.
出处
《工程数学学报》
CSCD
北大核心
2000年第1期78-82,共5页
Chinese Journal of Engineering Mathematics
基金
甘肃省自然科学基金!( ZS991- A2 5- 0 0 7- Z)
甘肃省教委科研基金!( 981- 30 )资助项目