期刊文献+

长江口及邻近海域水体反射率的模拟 被引量:3

Modeling of seawater reflectance in the Yangtze Estuary and the adjacent sea
下载PDF
导出
摘要 通过对2009年8月和11月水体光学特性的分析发现:长江口邻近海域夏秋两季反射光谱曲线由于悬浮泥沙、浮游植物以及黄色物质的影响呈现4种形状;叶绿素a浓度与浮游植物吸收系数可通过两种方式建立良好关系;将水体各组分光学特性参数化,并结合叶绿素a浓度与吸收系数的两种关系分别建立水体反射光谱参数模式,从而可以对水体遥感反射光谱进行模拟,模拟曲线的均方根误差分别为0.004 4和0.004 5.在模式的建立中,根据长江口海域水体组分浓度的分布状况,对悬浮泥沙浓度以及叶绿素a浓度进行分类,得到不同水体组分浓度下反射率光谱曲线;然后分别获得模式参数并进行模拟,得到的反射率模拟曲线与实测相对均方根误差为0.003 5,具有更高的模拟精度. The optical properties of the Yangtze Estuarine waters were discussed based on two investigations conducted respectively in August and November of 2009. It was found that the waterleaving reflectance spectra in August and November presented four types caused by different chlorophylla concentrations, suspended sediment concentrations and colored dissolved organic matters (CDOM). The relationships between chlorophylla concentration and absorption coefficient of the pigment particles were built by two ways, and two models used to simulate the reflectance spectra were established by using the parameterized optical properties, the RMSE of these models being 0. 004 4 and 0. 004 5, respectively. The accuracy of the model can be improved by classifying the concentrations of chlorophylla and suspended sediment, the RMSE was improved to 0. 003 5.
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第1期37-46,共10页 Journal of East China Normal University(Natural Science)
基金 海洋公益性科研专项(200905001-9) 全球变化研究国家重大科学研究计划项目(2010CB951204) 国家自然科学基金创新群体项目(41021064) 国家自然科学基金(40871165)
关键词 遥感反射率 吸收系数 散射系数 模拟 长江口 remote sensing reflectance absorption coefficient scattering coefficient modeling Yangtze Estuary
  • 相关文献

参考文献9

二级参考文献59

  • 1李铜基,陈清莲,汪小勇,杨安安.剖面法测量近岸水体遥感反射率的新方法[J].海洋技术,2004,23(3):1-4. 被引量:10
  • 2朱建华,李铜基.黄东海海区浮游植物色素吸收系数与叶绿素a浓度关系研究[J].海洋技术,2004,23(4):117-122. 被引量:25
  • 3BABIN M, STRAMSKI D, FERRARI G M,et al. Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters a round Europe. [J]. J Geophys Res, 2003,108 ( C7 ) : 3211, doi: 10. 1029/ 2001 JC000882.
  • 4SOSIK H M, GREEN R E, PEGAU W S, et al. Temporal and vertical variability in optical properties of New England shelf waters during late summer and spring [J]. J Geophys Res,2001,106 : 9455 -9472.
  • 5吴璩瑜.中国东南近海光吸收特性研究[D].厦门:厦门大学,2006.
  • 6MITCHELL B G. Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique ( QFr ) [ J ]. Ocean Optics X SPIE, 1990,1302 : 137-148.
  • 7MITCHELL B G, BRICAUD A, CARDER K, et al. Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples [ A ]. FARGION G S, MUELLER J L, McCLAIN C R. Ocean optics protocols for satellite ocean color sensor validation [ C ]. revision 2. Washington : NASA/TM-2000-209966,2000. 125-153.
  • 8LEE Z P, CARDER K L, MOBLEY C D, et al. Hyperspectral remote sensing for shallow waters. 1 A Semi-analytical model [ J ]. Applied Optics, 1998,37:6329-6338.
  • 9BRICAUD A, BABIN M, MOREL A, et al. Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton : Analysis and parameterization [ J ]. J Geophys Res, 1995,100(C7) :13 321-13 332.
  • 10PRIEUR L, SATHYENDRANAT H S. An optical classification of coastal and oceanic waters based on t he specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials [ J]. Limnol Oceanogr, 1981,26:671-689.

共引文献69

同被引文献41

  • 1沈健,沈焕庭,潘定安,肖成猷.长江河口最大浑浊带水沙输运机制分析[J].地理学报,1995,50(5):411-420. 被引量:68
  • 2宋庆君,唐军武.黄海、东海海区水体散射特性研究[J].海洋学报,2006,28(4):56-63. 被引量:67
  • 3Liangrocapart L S,Petrou M. A Two-layer Model of the Bidi- rectional Reflectance of Homogeneous Vegetation Canopies [J]. Remote Sensing of Environment,2002,80(1) 17-35.
  • 4Gemmell F, Varjo J, Strandstrom M. Estimating Forest Cover in a Boreal Forest Test Site Using Thematic Mapper Data from Two Dates[J]. Remote Sensing of Environment, 2001, 77(2) :197-211.
  • 5Fraster R S, Interaction Mechanisms Within the Atmosphere in Manual of Remote Sensing [M]. Falls Church: American Society of Photogrammetry, 1975.
  • 6Markham B L,Barker J L. Landsat-MSS and TM Post Cali- bration Dynamic Ranges, Atmospheric Reflectance and at Sat- ellite Temperature[J]. EOSAT. Landsat Technical Notes, 1986, (1) :3-8.
  • 7Schneider K, Mauser W. Processing and Accuracy of Landsat Thematic Mapper Data for Lake Surface Temperature Meas- urement[J] International Journal of Remote Sensing, 1996, (17) ; 2027-2041.
  • 8Jacquemoud S, Bacour C. Comparison of Four Radiative Tr- ansfer Models to Simulate Plant Canopies Reflectance Direct and Inverse Mod[J]. Remote Sensing of Environment,2000, 74(3) :471-481.
  • 9Prabhakara C, Dalu G, Kunde V G. Estimation of Sea Tem- perature from Remote Sensing in the 11 to 12 pm Window Region[J]. Journal of Geophysical Research Atmospheres, 1974, (79) : 5039-5044.
  • 10Gastellu Etchecorry J P, Gascon F. An Interpolation Proce- dure for Generalizing a Look up Table Inversion Metho[J]. Remote Sensing of Environment,2003,87(1) :55-71.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部