期刊文献+

利用加权面积透视变换对地铁站台进行人群监控 被引量:6

Crowd Monitoring for Underground Railway Station Based on Weighted Area Perspective Transformation
原文传递
导出
摘要 首先,依据摄像机的高度和角度提出了一种加权面积的计算方法;然后,将加权面积作为主要特征,利用人体头部和躯干部位梯度方向的不同,结合AdaBoost分类器对人群密度进行智能分级;最后,依据密度分级的结果对不同密度级别的人群分别进行人数统计。实验结果表明,所提出的方法能有效、实时、准确地对地铁站场景的人群进行人数统计。 Crowd counting in dense crowd scene has become an important and difficult topic in the field of automatic surveillance system.Since there are some requirements in the orbital traffic,a crowd counting approach for underground railway station is proposed.A weighted area computing approach is presented according to the information of camera firstly.Then the crowd density is estimated using AdaBoost classifier with the difference of gradient orientation between head and body of people.The people number is counted according to the crowd density and the weighted area.The experiment results show that the proposed approach is effective and feasible for crowd counting in underground railway station.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2012年第3期343-347,共5页 Geomatics and Information Science of Wuhan University
基金 中央高校基本科研业务费专项资金资助项目(6081001)
关键词 地铁站台 加权面积 密度分级 人数统计 underground railway station weighted area density estimation crowd counting
  • 相关文献

参考文献14

  • 1毛以芳,沈小莉,李英哲,栗洁.基于头肩矩特征的人体识别研究[J].科技信息,2009(16):63-64. 被引量:4
  • 2吕常魁,姜澄宇,王宁生.一种新的运动检测及轮廓追踪方法[J].武汉大学学报(信息科学版),2005,30(8):723-727. 被引量:11
  • 3Paisitkriangkrai S, Shen C, Zhang Jian. Fast Pedestrian Detection Using a Cascade of Boosted Covariance Features [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18 (8): 1 140-1 151.
  • 4Sim C H, Rajmadhan E, Ranganath S. A Two-Step Approach for Detecting Individuals withinDense Crowds[C]. The 5th International Conference on Articulated Motion and Deformable Objects, Hei delberg, Germany, 2008.
  • 5Schwartz W R, Kemhhavi A, Harwood D, et al. Human Detection Using Partial Least Squares Anal ysis[C]. The International Conference on Computer Vision, Kyoto, Japan, 2009.
  • 6Wang Z R, Jia Y I., Huang Hua, et al. Pedestrian Detection Using Boosted HOG Features[C]. The llth International IEEE Conference on Intelligent Transaction Systems, Beijing, China, 2008.
  • 7Wu Xinyu, Liang Guoyuan, I.ee K K, et al. Crowd Density Estimation Using Texture Analysis and Learning[C]. The 2006 IEEE International Conference on Robotics and Biomimetics, Kunming, China, 2006.
  • 8Chow T W S, Cho S Y. Industrial Neural Vision System for Underground Railway Station Platform Surveillance [J]. Advanced Engineering Information, 2002, 16:73-83.
  • 9Ryan D, Denman S,Fookes C, et al. Crowd Count ing using Multiple Local Features[C]. Digital Image Computing: Techniques and Applications, Melbourne, Victoria, 2009.
  • 10Chan A B, Liang Z S J, Vasconcelos N. Privacy Preserving Crowd Monitoring: Counting People without People Models or Tracking[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, 2008.

二级参考文献33

  • 1汪闽,骆剑承,明冬萍.高分辨率遥感影像上基于形状特征的船舶提取[J].武汉大学学报(信息科学版),2005,30(8):685-688. 被引量:29
  • 2Hashimoto K,Morinaka K.People count system using multi-sensing application[C]//International Conference on Solid-state Sensors and Actuators, 1997 : 1291-1294.
  • 3Valle J D,Oliveira L E S.People counting in low density video sequences[C]//LNCS 4872 : PSIVT 2007,2007 : 737-748.
  • 4Li Chen,Ji Tao.People counting using iterative mean-shift fitting with symmetry measure[C]//International Conference on Information and Communication Security,2007:890-895.
  • 5Bozzoli M.A statistical method for people counting in crowded environments[C]//14th International Conference on Image Analysis and Processing(ICIAP 2007 ), 2007 : 1110-1115.
  • 6Ma Ruihua,Li Liyuan.On pixel count based crowd density estimation for visual surveillance[C]//Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems , 2004 :170-173.
  • 7Marana A N,Cavenaghi M A.Real-time crowd density estimation using images[C]//International Symposium on Visual Computing (ISVC 2005 ), 2005 : 355-362.
  • 8Liang Yongsheng,Zhang Naitong.The determination of the link with the smallest end-to-end network latency in ethernet architecture[J]. Journal of Harbin Institute of Technology,2007,4.
  • 9Baatz M, Schape A. Multiresolution Segmentation: an Optimization Approach for High Quality Multi scale Image Segmentation[C]. Angewandte Geographische Information Sverarbeitung Ⅻ, Karlsruhe, 2000.
  • 10Quattrochi D A, Goodchild M F. Scale in Remote Sensing and Gis[M]. Boca Raton, FL:CRC Press, 1997.

共引文献37

同被引文献40

  • 1王成儒,顾广华.一种采用背景统计技术的视频对象分割算法[J].光电工程,2004,31(8):57-60. 被引量:12
  • 2刘珂,周富强,张广军.半径约束最小二乘圆拟合方法及其误差分析[J].光电子.激光,2006,17(5):604-607. 被引量:81
  • 3Xu Yanwu, Cao Xianbin, Qiao H. Pedestrian De- tection with I.ocal Feature Assistant[C]. IEEE In- ternational Conference on Control and Automation, Guangzhou, China, 2007.
  • 4Zhang Zui, Gunes H, Piccardi M. Head Detection for Video Surveillance Based on Categorical Hair and Skin Colour Models[C]. IEEE International Conference on Image Processing, Cairo, Egypt, 2009.
  • 5Li Min, Zhang Zhaoxiang, Huang Kaiqi, et al. Es timating the Number of People in Crowded Scenes by MID Based Foreground Segmentation and Head- shoulder Deteetion[C]. International Conference on Pattern Recognition, Piseataway ,N J, USA,2008.
  • 6Ma Wenhua, Huang l.ei, I.iu Changping. Advanced Lo- cal Binary Pattern Descriptors for Crowd Estimation[C]. Pacific-Asia Workshop on Computational Intelligence and Industrial Application, Wuhan, China,2008.
  • 7Ma Wenhua, Huang Lei, Liu Changping. Crowd Density Analysis Using Co-occurrence Texture Fea- tures[C]. International Conference on Computer Sciences and Convergence Information Technology, Seoul, Korea, 2010.
  • 8Cao Tian, Wu Xinyu, Guo Jinnian, et al. Abnormal Crowd Motion Analysis [C]. IEEE International Conference on Robotics and Biomimetics, Guilin, China, 2009.
  • 9Chen Duanyu, Huang Pochung. Dynamic Human Crowd Modeling and Its Application to Anomalous Events Detection[C]. IEEE International Confer- ence on Multimedia and Expo, Singapore, 2010.
  • 10Wang Zhen, Wang Weidong. LHMM-based Gath- ering Detection in Video Surveillanee[C]. Interna- tional Conference on Intelligent Computing and Inte- grated Systems, Guilin, China. 2010.

引证文献6

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部