期刊文献+

支持向量机的OTHR多频特征目标分类识别法

A Method of OTHR Target Classification and Recognition Based on SVM
下载PDF
导出
摘要 针对低信噪比下多频法在天波超视距雷达(Over-The-Horizon Radar,OTHR)目标分类识别中分类精度不高的缺点,充分利用雷达量测的一些先验信息,将基于支持向量机(Support Vector Machine,SVM)的多分类器引入多频法中,提出了一种基于SVM的OTHR多频特征目标分类识别方法。仿真结果表明,利用较少的3个频率点,在信噪比较低的条件下可获得较好的分类识别效果,说明了该方法在OTHR目标分类识别中的有效性和可行性。 The target classification accuracy of multi-frequency method is not high at low SNR in Over-The-Horizon Radar(OTHR).An algorithm of multi-frequency features target classification and identification for OTHR based on Support Vector Machine(SVM) is given.It combines the multiple classifiers based on SVM with the multi-frequency method,and makes full use of some prior information from radar measurements.Simulation shows the better classification and identification results in the case of using three frequency points at low SNR,which indicates the validity and feasibility to apply this algorithm in OTHR for target classification and recognition.
出处 《火力与指挥控制》 CSCD 北大核心 2012年第2期16-19,共4页 Fire Control & Command Control
基金 国家自然科学基金资助项目(60634030 60702066)
关键词 天波超视距雷达 支持向量机 多频特征 目标分类 over-the-horizon radar support vector machine multi-frequency features target classification
  • 相关文献

参考文献8

  • 1StuartJ.AndersonTargetClassification,RecognitionandIdentificationwithHFRadar[J].RTOSETSymposiumon"TargetIdentificationandRecognitionUsingRFSystems",Oslo,Norway,2004:11-13.
  • 2StausbergerDJ,GarberED,ChamberlainNF,etal.ModelingandPerformanceofHF/OTHRadarTargetClassificationSystems[J].IEEETransactionsonAerospaceandElectronicSystems,1992,28(2):396-403.
  • 3BennettC,ToomeyJ.TargetClassificationwithMultipleFrequencyIllumination[J].IEEETransactionsonAntennasandPropagation,1981,29(2):352-358.
  • 4BoserB,GuyonI,VapnikV.ATrainingAlgorithmforOptimalMarginClassifiers,FifthAnnualWorkshoponComputationalLearningTheory[M].Pittsburgh:ACMPress,1992.
  • 5CortesC,VapnikV.Support-vectorNetworks[J].MachineLearning,1995,20:273-297.
  • 6张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2276
  • 7安金龙,王正欧,马振平.一种新的支持向量机多类分类方法[J].信息与控制,2004,33(3):262-267. 被引量:46
  • 8唐克,张罗政,魏琪.基于支持向量机的多分类军事目标识别应用[J].火力与指挥控制,2009,34(8):97-100. 被引量:4

二级参考文献16

  • 1Vapnik V N. The Nature of Statistical of Learning Theory[M].New York :Springer _ Verlag, 1995.
  • 2吴玉璋.无人机概论附录一[M].合肥:合肥炮兵学院,1996.
  • 3张俊学.作战运筹学[M].北京:解放军出版社,2000..
  • 4Bottou L, Cortes C, Denker J. Comparison of classifier methods:a case study in handwriting digit recognition [ A]. Preceedings of the 12th IAPR International Conference on Pattern Recognition [ C ]. Jerusalem: IEEE, 1994.77 ~ 82.
  • 5Platt J C, Cristianini N, Shawe-Taylor J. Large margin DAGs for multiclass classification [ A ]. Advances in Neural Information Processing Systems [C]. 2000.547 -553.
  • 6Vapnik V. Statistical Learning Theory [ M]. New York:Wiley,1998.
  • 7Crammer K , Singer Y. On the lesrnability and design of output codes for multiclass problems [A]. Proceedings of the Thirteenth Annual Conference on Computational Learning Theory [ C ]. SanFransisco:Morgan Kanfmann, 2000.35 ~46.
  • 8Hsu C W, Lin C J. A comparison of methods for multiclass support vector machines. hines [ J ]. IEEE Transactions on Neural Networks, 2002,13(2) :415 -425.
  • 9边肇祺 张学工 等.模式识别[M].北京:清华大学出版社,2001..
  • 10Kreβel U. Pairwise classification and support vector machines [ A]. Advances in Kernel Methods - Support Vector Learning [C]. Cambridge, MA:MIT Press,1999.255 -268.

共引文献2321

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部