期刊文献+

快点火参数窗口的计算 被引量:3

Parameter window for fast ignition calculated by Monte-Carlo method
下载PDF
导出
摘要 在入射粒子和等离子体相互作用物理学基础上,采用蒙特卡罗方法计算了常温和10 keV下,电子、氢、氘、氚和氦粒子在500 g/cm3纯氘等离子体中的能量损失、射程,以及在和燃料直径为50μm,在边缘、中心点火两种方式下的能量沉积时间,得出燃料约束时间为20 ps条件下的束流强度。实现快点火的边缘(中心)点火要求的最低入射束流强度:电子束为363(458)MA,质子束为187(355)MA,氘束为13.1(24.8)MA,氚束为10.9(20.9)MA,氦束为9.34(17.0)MA。单个粒子在边缘(中心)点火的最长能量沉积时间分别为电子0.036(0.078)ps,质子0.219(0.569)ps,氘0.241(0.651)ps,氚0.320(0.854)ps,氦0.228(0.592)ps,均小于燃料约束时间。数据的分析表明,入射粒子射程的末端设计在加热区,可以有效提高加热效率,同时也可以降低需要的束流强度。点火需要的最低总能量,应通过增加入射粒子的流强来实现。 The interaction physics between energetic particle and plasma are introduced. The energy loss, range and passthrough time of energetic electron, proton, D, T or He in pure D plasma of 500 g/cm3 in density and 50 btm in diameter at room temperature or 10 keV were calculated by Monte-Carlo method. The results show that, for electron, proton, D, T or He beam, the lowest beam intensity needed for edge(center) igniting is 363(458), 187(355), 13.1(24.8), 10.9(20.9) or 9.34(17.0) MA, respectively; the longest time for single particle to pass through plasma is 0. 036(0. 078), 0. 219(0. 569), 0. 241(0. 651), 0. 320 (0. 854) or 0. 228(0. 592) ps, respectively. All the time above is below the fuel confinement time. Because of the Bragg peak of energy loss curve or higher energy loss, the end of particle range should be located in the heating zone to improve the heating efficiency and lower the bunch intensity needed for ignition. The lowest energy for ignition should be realized by increasing bunch intensity.
作者 王衍斌
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2012年第1期123-128,共6页 High Power Laser and Particle Beams
基金 国家高技术发展计划项目
关键词 快点火 氘等离子体 蒙特卡罗计算 加热 能量损失 射程 fast ignition deuterium plasma Monte-Carlo method heating energy loss range
  • 相关文献

参考文献11

  • 1沈百飞.惯性聚变物理[M].北京:科学出版社,2008.
  • 2Atzeni S. Inertial fusion ignitor: ignition pulse parameter window vs the penetration depth of the heating particle and the density of the precompressed fuel[J]. Phys Plasmas, 1999, 4(8) :3316-3326.
  • 3Honrubia J J, Meyer-ter-Vehn J. Fast ignition of fusion targets by laser-driven electrons[J]. Plasma Phys Control Fusion, 2009,51:014008.
  • 4Solodov A A, Anderson K S, Betti R, et al. Integrated simulations of implosion, electron transport, and heating for direct-drive fast-ignition targets[J]. Phys Plasmas, 2009,16:056309.
  • 5Temporal M, Ramis R, Honrubial J J, et al. Fast ignition induced by shocks generated by laser-accelerated proton beams[J]. Plasma Phys Control Fusion, 2009, 51:035010.
  • 6Temporal M, Honrubia J J, Atzeni S. Proton-beam driven fast ignition of inertially confined fuels: reduction of the ignition energy by the use of two proton beams with radially shaped profiles[J]. Phys Plasmas, 2008, 15: 052702.
  • 7Perkins L J, Betti R, LaFortune K N, et al. Shock ignition: a new approach to high gain inertial confinement fusion on the National Ignition Facility[J]. Phys Rev Lett, 2009,103 : 045004.
  • 8Mauldin M P, Giraldez E, Jaquez J S, et al. Fabrication of targets for proton focus cone fast ignition experiments[J]. Fusion Science And Technology, 2007, 51(4) :626-630.
  • 9Ziegler J F. The stopping of energetic light ions in elemental matter[J]. J Appl Phys, 1999, 85(3) : 1249-1272.
  • 10Solodov A A, Betti R. Stopping power and range of energetic electrons in dense plasmas of fast-ignition fusion targets[J].Phys Plasmas, 2008, 15: 042707.

同被引文献23

  • 1Honrubial J J,Meyer-ter-Vehn J. Fast ignition of fusion targets by laser-driven electrons[J]. Plasma Phys Control Fusion,2009 , 51 :014008.
  • 2Atzenil S, Schiavil A. Davies J R. Stopping and scattering of relativistic electron beams in dense plasmas and requirements for fast ignition[J]. Plasma Phys Control Fusion , 2009,51:015016.
  • 3Davies J R. Alfven limit in fast ignition[J]. PhysRevE, 2004,69:065402.
  • 4Li C K,Petrasso R D. Stopping* straggling, and blooming of directed energetic electrons in hydrogenic and arbitrary-Z plasmas[J]. PhysRev E, 2006,73:016402.
  • 5Tanimoto T,Habara H, Kodama R, et al. Measurements of fast electron scaling generated by petawatt laser systems[J]. Phys Plasmas,2009,16:062703.
  • 6Ziegler J F. The stopping of energetic light Ions in elemental matter[J]. J Appl Phys / Rev Appl Phys , 1999 .85 : 1249-1272.
  • 7Solodov A A, Betti R. Stopping power and range of energetic electrons in dense plasmas of fast-ignition fusion targets[J]. Phys Plasmas.2008,15:042707.
  • 8Solodov A A,Anderson K S,Betti R, et al. Integrated simulations of implosion, electron transport,and heating for direct-drive fast-igni-tion targets[J]. Phys Plasmas . 2009,16: 056309.
  • 9Honrubia J J,Meyer-ter-Vehn J.Fast ignition of fusion targets by laser-driven electrons[J].Plasma Physics and Controlled Fusion,2009,51:014008.
  • 10Solodov A A,Anderson K S,Betti R,et al.Integrated simulations of implosion,electron transport,and heating for direct-drive fast-ignition targets[J].Physics of Plasmas,2009,16:056309.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部