期刊文献+

带色散项的高阶非线性Schrdinger方程的精确解 被引量:3

Exact wave solutions for the higher-order nonlinear Schrdinger equation with a dispersion term
下载PDF
导出
摘要 对一类带色散项的高阶非线性Schrdinger方程的精确解进行研究.通过行波约化,将一类带色散项的高阶非线性Schrdinger方程化为一个高阶非线性常微分方程.再借助于计算机代数系统Mathematica通过构造非线性常微分方程的精确解,成功获得了一系列含有多个参数的包络型精确解,当精确解中参数取特殊值时可以得到两种新型的复合孤子解.并讨论了这两种孤子解存在的参数条件. Exact solutions of the higher-order nonlinear SchrSdinger equation with a dispersion term are studied. By traveling wave reduction, the higher-order nonlinear Schr'Sdinger equation are transformed into nonlinear ordinary differential equation, and then by constructing a series of exact solutions of nonlinear ordinary differential equation, many.envelope type exact wave solutions containing multiple parameters are obtained for the higher-order nonlinear Schrodinger equation with the aid of computer algebraic system Mathematica. when parameters are taken specific values, two new kind of soliton solution are obtained. And the conditions of the existence of soliton solution are discussed.
作者 曹瑞
机构地区 菏泽学院数学系
出处 《纯粹数学与应用数学》 CSCD 2012年第1期92-98,共7页 Pure and Applied Mathematics
基金 菏泽学院科学研究基金(XY07SX01)
关键词 高阶非线性Schrdinger方程 精确解 孤立波解 the higher-order nonlinear SchrSdinger equation, exact wave solutions, solitary wave solutions
  • 相关文献

参考文献17

二级参考文献40

  • 1马红彩.A Simple Method to Generate Lie Point Symmetry Groups of the (3+1)-Dimensional Jimbo-Miwa Equation[J].Chinese Physics Letters,2005,22(3):554-557. 被引量:17
  • 2曹瑞,张健.耦合非线性Klein-Gordon方程组的周期解[J].四川师范大学学报(自然科学版),2006,29(2):158-160. 被引量:9
  • 3Wadati M. Introduction to solitons[J]. Pramana: J. Phys., 2001,57(5-6):841-847.
  • 4Kivshar Y S, Pelinovsky D E. Self-focusing and transverse instabilities of solitary waves[J]. Phys. Reports, 2000,331:117-195.
  • 5Hereman W, Takaoka M. Solitary wave solutions of nonlinear evolution and wave equations using a direct method and Macsyma[J]. J. Phys. A., 1990,23:4805-4822.
  • 6Kadomtsev B B, Petviashvili V I. On the stability of solitary waves in weakly dispersive media[J]. Sov. Phys. Dokl., 1970,15:539-541.
  • 7Shang Yadong. Explicit and exact solutions for a generalized long-short wave equations with strong nonlinear term[J]. Chaos Solitons Fract, 2005,26:527-539.
  • 8Conte R, Musette M. Link between solitary waves and projective Riccati equations[J]. J. Phys. A: Math. Gen., 1992,25:5609-5612.
  • 9Zhang Guixu, Li Zhibin, Duan Yishi. Exact solitary wave solutions of nonlinear exact solitary wave solutions of nonlinear wave equations[J]. Sci. China, 2001,44(3):396-401.
  • 10Shang Yadong, Huang Yong, Yuan Wenjun. The extended hyperbolic functions method and new exact solutions to the Zakharov equations[J]. Applied Mathematics and Computation, 2008~200:110-122.

共引文献198

同被引文献20

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部