期刊文献+

基于拟层流风波生成机制的海浪谱模型 被引量:2

An ocean wave spectrum model based on quasi-laminar wind-induced wave generation mechanism
下载PDF
导出
摘要 海浪谱的能量可以视为由具有不同相速度的谐波携带的能量所组成。基于对风波形成、发展过程的认识,认为各组成谐波的能量由谐波自平均风摄取而来,由此根据拟层流模型推导出谐波能量密度的计算公式,建立以等效风速和峰值频率等为基本参数的海浪谱模型——随机Fourier函数模型,并给出了确定谐波频率、波长、相速度、振幅以及等效风速等模型参数的原则和计算方法。在59个实测样本谱基础上,采用随机建模方法确定模型参数的取值及其概率分布。结果表明,海浪谱模型可以很好地预测谱能,所计算的物理谱与实测谱均值吻合良好。 In this paper a wave spectrum is considered consisting of energy drawn from wind by a series of harmonic waves with differ- ent phase speeds. Based on this assumption, a stochastic Fourier function model is proposed, in which the equivalent wind speed and peak frequency are chosen as the basic parameters. The formulas of energy density transferred from wind to wave are derived in terms of the quasi-laminar model. The computation principles and methods for deriving the harmonic waveg frequency, wave length, phase ve- locity, wave amplitude and equivalent wind speed are introduced. Based on 59 recorded samples of ocean wave spectra, parameters of the stochastic Fourier function model are determined by the stochastic modeling principle. The simulation results indicate that the phys- ical model presented in this paper can estimate the spectrum energy well. The mean spectrum of the stochastic Fourier function and the power spectrum calculated by the theoretical model have a good agreement with records.
作者 徐亚洲 李杰
出处 《海洋工程》 CSCD 北大核心 2012年第1期83-91,共9页 The Ocean Engineering
基金 国家自然科学基金创新研究群体资助项目(50621062)
关键词 拟层流模型 随机Fourier函数 海浪谱 风波能量传递 quasi-laminar model stochastic Fourier function ocean wave spectrum wind-wave energy transfer
  • 相关文献

参考文献29

  • 1Pierson W J. A unified mathematical theory for the analysis, propagation and refraction of storm generated ocean surface waves [ R]. New York:New York University,College of Engineering, Dept. Meteorology, 1952.
  • 2Rice S O. Mathematical analysis of random noise[J]. Bell Systems Tech. J. ,1944, 23:282-332.
  • 3Longuet-Higgins M S. On the statistical distribution of the height of sea waves[ J ].J. Mar. Res. , 1952, 11 : 245-266.
  • 4Cartwright D E, Longuet-Higgins M S. The statistical distribution of the maxima of a random function [ J ]. Proc. Roy. Soc. , 1956, 237( 1209): 212-232.
  • 5Longuet-Higgins M S. On the joint distribution of the periods and amplitudes in a random wave field[ J]. J. Mar. Res. , 1952, 389 : 241-258.
  • 6Longuet-Higgins M S. On the joint distribution of the periods and amplitudes of sea waves[ J]. J. Geophys. Res. , 1975, 80: 2688 -2694.
  • 7Neumann G. On ocean wave spectra and a new method of forecasting wind-generated sea[ M]. New York: United states Beach Erosion Board, 1953.
  • 8Pierson W J, Moscowitz L. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaig- orodskii[J]. J. Geophys. Res. , 1964, 69(24) : 5181-5190.
  • 9Hasselmann K, Barnett T P, Bouws E, et al. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP)[ M]. Deutsches Hydrograph. Inst. , 1973.
  • 10Wen S C,Zhang D C, Sun S C, et al. Form of deep-water wind-wave frequency spectrum (I) Derivation of spectrum [ J ]. Progress in Natural Science, 1994, 4(4) :407-427.

二级参考文献13

  • 1PHILLIPS O M. On the generation of waves by turbulent wind[J]. J Fluid Mech, 1957(5): 417-445.
  • 2MILES J W. On the generation of surface waves by shear flows[J]. J Fluid Mech, 1957(2) : 155 - 204.
  • 3LOCK R C. Hydrodynamic stability of the flow in the laminar boundary layer between parallel streams[J]. Proc Camb Phil Soc, 1954, 50:105 - 124.
  • 4MILES J W. On the generation of surface waves by shear flows, part 2EJ]. J Fluid Mech, 1959(4) : 568 - 582.
  • 5BENJAMIN T B. Sheafing flow over a wavy boundary[J]. J Fluid Mech, 1959(2): 161 - 205.
  • 6DAVIS R E. On the turbulent flow over a wavy botmdary[J]. J Fluid Mech, 1970(2): 161 - 205.
  • 7TOWNSEND A A. Flow in a deep turbulent boundary over a surface distorted by water waves[J]. J Fluid Mech, 1972(4) : 719 - 735.
  • 8DUIN C A. VAN, JANSSEN P A E M. An analytic model of the generation of surface gravity waves by turbulent air flow[J]. J Fluid Mech, 1992, 236: 197- 215.
  • 9HRISTOV T S, MILLER S D, Friehe C A. Dynamical coupling of wind and ocean waves through wave-induced air flow[J]. Nature, 2003, 442:55 - 58.
  • 10NASIRUDDIN S, KAMRAN S. Airside velocity measurements over the wind-sheared water surface using particle image velocimetry[J]. Ocean Dynamics, 2008, 58:65- 79.

共引文献7

同被引文献17

  • 1王国粹,王伟,杨敏.3.6MW海上风机单桩基础设计与分析[J].岩土工程学报,2011,33(S2):95-100. 被引量:55
  • 2李德源,叶枝全,陈严.风力机旋转叶片的多体动力学数值分析[J].太阳能学报,2005,26(4):473-481. 被引量:30
  • 3尹华伟,易伟建,魏红卫.横向推力单桩的动力非线性分析[J].工程力学,2006,23(7):99-104. 被引量:6
  • 4Borgman L E. Ocean wave simulation for engineering design [J]. Journal of the Waterways and Harbors Division, ASCE, 1969, 95(4): 557-583.
  • 5Winterstein S R. Random process simulation with the fast Hartley transform [ J ]. Journal of Sound and Vibration, 1990, 137(3) : 527 -531.
  • 6Germ6n R. Analysis and simulation of wave records through fast Hartley transform [ J ]. Ocean Engineering, 2003, 30(17) : 2255 -2273.
  • 7Morooka C K, Yokoo I H. Numerical simulation and spectral analysis of irregular sea waves [ J ]. International Journal of Offshore and Polar Engineering, 1997,7 (3) : 189 - 196.
  • 8Di Paola M, Pisano A A. Multivariate stochastic wave generation [ J]. Applied Ocean Research, 1996, 18 (6): 361 - 365.
  • 9Chen Jian-bing, Sun Wei-ling, Li Jie, et al. Journal of Applied Mechanics-Transactions of the ASME, 2013, 80( 1 ) :011001.
  • 10Chen Jian-bing, Li Jie. Optimal determination of frequencies in the spectral representation of stochastic processes [ J ]. Computational Mechanics, 2013, 51 (5) : 791 - 806.

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部