期刊文献+

改进极坐标的频域图像配准算法 被引量:3

A frequency-domain image registration algorithm using the improved polar transform
下载PDF
导出
摘要 针对传统极坐标变换在频域配准中的问题,提出了一种基于改进极坐标的频域配准算法。先对参考图像和待配准图像分别进行傅立叶变换,将频谱信息映射至改进极坐标下。依次沿角度和极径方向投影,计算出图像间的旋转、缩放参数;再对待配准图像进行相应地旋转、缩放校正,根据幅度加权的相位差进一步得到图像间的平移量。当耗费的计算量大致相当时,与基于传统极坐标或伪极坐标变换的频域配准算法相比较,文中算法获得更高的图像配准精度。 The traditional polar transform usually suffers from the non-uniform sampling problem, which means that the low-frequency components are often over-sampled, while the high-frequency components are relatively under-sampled. Consequently, the inappropriate sampling rates will affect the registration accuracy, or else increase the computation cost vainly. To conquer the drawbacks mentioned above, we develops a novel frequency-domain registration algorithm using the improved polar transform. The reference image and the image to be registered are both carried out Fourier transform individually, and the corresponding spectrum images are sequentially mapped into the improved polar coordinate. Then projection operations are done along the angular and radius direction, respectively. As a result, the rotation and scale parameters between the two spatial images can be easily induced from the corresponding projection curves. Eventually, the shift parameters are retrieved with the weighted phase difference, after the inverse rotation and scale operations are implemented for the image to be registered. The experimental results show that the registration precision of our algorithm is much higher than the algorithm using the traditional polar transform or the pseudo-polar transform, while the required computation costs are almost equivalent.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第2期98-104,共7页 Journal of Chongqing University
基金 教育部重点科研资助项目(108174) 重庆市自然科学基金资助项目(2008BB3169)
关键词 图像配准 改进极坐标 投影 相位差 image registration the improved polar coordinate projection phase difference
  • 相关文献

参考文献13

  • 1LI ZHONG-KE, YANG XIAO-HUI, WU LE-NAN. Image registration based on hough transform and phase correlation [C]// Proceedings of 2003 International Conference on Neural Networks & Signal Processing, December 14-17, 2003, Nanjing, China. IEEE Inc, United States, 2003, 2: 956-959.
  • 2CHEN HUA-MEI, VARSHNEY P K, ARORA M K. Performance of mutual information similarity measure for registration of multitemporal remote sensing images [J]. IEEE Transactions on Geoseience and Remote Sensing, 2003, 41(11): 2445-2454.
  • 3LIN HUI, DU PE-JUN, ZHAO WEI-CHANG,et al. Image registration based on corner detection and affine transformation [C]// Proceedings of the 3rd International Conference on Image and Signal Proeessing, October 16-18, 2009, Yantai, China. IEEE Computer Society, 2010, 5:2184-2188.
  • 4PALENICHKA R M, ZAREMBA M B. Automatic extraction of control points for the registration of optical satellite and LIDAR images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(7): 2864-2879.
  • 5ZOKAI S, WOLBERG. Image registration using logpolar mappings for recovery of large-scale similarity and projective transformations [J]. IEEE Transaetions on Image Processing, 2005, 14(10):1422-1434.
  • 6TRAVER V J, PLA F. Dealing with 2D translation estimation in log-polar imagery [J]. Image and Vision Computing, 2003, 21(2): 145-160.
  • 7SARVAIYA J N, PATNAIK S, BOMBAYWALA S. Image registration using log-polar transform and phase correlation [C]// Proceedings of the IEEE Region 10 Annual International Conference on TENCON, November 23-26, 2009, Singapore. IEEE Ine, United States, 2009, 1-5.
  • 8SAMRIJIARAPON O, CHITSOBHUK O. An fft-based technique and best-first search for image registration [ C ]// International Symposium on Communications and Information Technologies, October 21-23, 2008, Vientiane, Laos. IEEE Computer Society, 2008, 364-367.
  • 9KELLER Y, AVERBUCH A, ISRAELL M. Pseudo polar based estimation of large translations rotations and scalings in images [J]. IEEE Transactions on Image Processing, 2005, 14(1): 12-22.
  • 10KELLER Y, SHKOLNISKY Y. An algebraic approach to symmetry detection [C]// Proceedings of the 17th International Conference on Pattern Recognition, August 23-26, 2004, Cambridge, Kingdom. IEEE Inc, United States, 2004, 3: 186-189.

二级参考文献10

  • 1丁贵广,戴琼海,徐文立.基于兴趣点局部分布特征的图像检索方法[J].光电子.激光,2005,16(9):1101-1106. 被引量:24
  • 2Zitova B,Flusser J. Image registration methods:a survey[J]. Image and Vision Computing, 2003,21 (11) : 977-1000.
  • 3Reddy B S, Chatterji B N. An FFT-based technique for translation rotation,and scale-invariant image registration[J]. IEEE Transactions on Image Processing, 1996, 5(8):1266-1271.
  • 4Stone H S ,Wolpov R. Blind cross-spectral image registration using prefiltering and Fourieer-based translation detection[J]. IEEE Trans. on Geoscience and Remoting Sensing,2002,40(3):637-650.
  • 5Keller Y, Averbuch A, Israeli M. Pseudopolar-based estimation of large translations, rotation, and scalings in images[J]. IEEE Transactions on Image Processing, 2005,14(1):12-22.
  • 6Averbuch A, Coifman R R, Donoho D L, et al. Fast and accurate polar Fourier transform[EB/OL].http://www.cs.technion.ac. il/~elad/Journals/30-PolarFFT-SISC.pdf,2004.
  • 7LIU Han-zhou, GUO Bao-long, FENG Zong-zhe. Pseudolog-polar Fourier transform for image registration [J].IEEE Signal Processing Letters, 2006, 13(1):17-20.
  • 8Kuglin C D, Hines D C. The phase correlation image alignment method[A]. Int Conf Cybernetics and Society[C].New York: IEEE, 1975.163-165.
  • 9Canny J. A computational approach to edge detection[J].IEEE Trans on Pattern Analysis Machine Intelligence,1986,8(6) :679-698.
  • 10赵昱,申铉国.基于维纳滤波的旋转不变相关识别[J].光电子.激光,2004,15(1):78-81. 被引量:5

共引文献8

同被引文献37

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部