期刊文献+

差分变异本质粒子群的模糊熵图像分割

Image segmentation based on differential mutation bare bones particle swarm optimization and fuzzy entropy
下载PDF
导出
摘要 基本本质粒子群算法存在易陷入局部最优以及过早收敛的缺点。在基本本质粒子群算法的基础上,借鉴差分进化中利用差分量对种群进行变异操作的思想,提出了差分变异本质粒子群优化算法。结合图像模糊熵,得到了基于差分变异粒子群优化的模糊熵图像分割算法。算法利用差分变异本质粒子群来搜索使图像模糊熵最大的参数值,得到分割阈值对图像进行分割。通过与其它两种本质粒子群算法的分割结果比较表明该算法取得了令人满意的分割结果,算法运算时间很小,能够满足对煤尘浓度实时精确测量的要求。 Basic bare bones particle swarm optimization (BBPSO) is easy to get stuck into local optima. Based on basic BBPSO, using the idea of mutation in differential evolution, a new algorithm named differential mutation bare bones particle swarm optimization (DMBBPSO) is proposed and combined with image fuzzy entropy to obtain a new segmentation algorithm based on DMBBPSO and fuzzy entropy for image segmentation. The proposed algorithm uses DMEBBPSO to explore fuzzy parameters of maximum fuzzy entropy and gets the image segmentation threshold. According to the experiment results, compared with other two algorithms, the proposed algorithm shows better segmentation performance and very low time cost. It can be used to real time and precision measure coal dust image.
作者 张伟
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第2期149-154,共6页 Journal of Chongqing University
基金 山东省自然科学基金资助项目(Y2008G14)
关键词 本质粒子群 差分变异 模糊熵 图像分割 煤尘图像 bare bones particle swarm optimization differential mutation fuzzy entropy image segmentation coal dust imge
  • 相关文献

参考文献18

  • 1MURTHY C A, PAL S K. Histogram thresholding by minimizing gray level fuzziness [ J ]. Information Sciences, 1992, 60(2) : 107-135.
  • 2ZHAO B, GUO C X, CAO Y J. A multiagent-based particle swarm optimization approach for optimal reactive power dispatch [J]. IEEE Transactions on Power Systems, 2005, 20(2): 1070-1078.
  • 3TING T O, RAO M V C, LOO C K. A novel approach for unit commitment problem via an effective hybrid particle swarm optimization[J]. IEEE Transactions on Power Systems, 2006, 21(1): 411-418.
  • 4LEANDRO D, SANTOS C, BRUNO M H. Fuzzy identification based on a chaotic particle swarm optimization approach applied to a nonlinear yo-yo motion System[J]. IEEE Transactions on Industrial Electronics, 2007, 54(6): 3234-3245.
  • 5WU J K, ZHU J Q, CHEN G T, et al. A hybrid method for optimal scheduling of short-term electric power generation of cascaded hydroelectric plants based on particle swarm optimization and chance-constrained programming [J]. IEEE Transactions on Power Systems, 2008, 23(4):1570-1579.
  • 6LIN C J, CHEN C H, LIN C T. A hybrid of cooperative particle swarm optimization and cultural algorithm for neural fuzzy networks and its prediction applications[J]. IEEE Transactions on systems, Man, and Cybernetics Part C: Applications and Reviews, 2009,39(1):55-68.
  • 7KENNEDY J. Bare bones particle swarms [C]// Proceedings of the IEEE Swarm Intelligence Symposium, April 24-26, 2003. lndianapolie, Indiana.. Institute of Electrical and Electronics Engineers Inc. , 2003:80-87.
  • 8YANG X M, YUAN J S, YUAN J Y, et al. A modified particle swarm optimizer with dynamic adaptation[J]. Applied Mathematics and Computation, 2007,189(2) : 1205-1213.
  • 9TRIPATHI P K, BANDYPADHYAY S, PAL S K. Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients [J].Information Sciences, 2007, 177(22): 5033-5049.
  • 10ARUMUGAM M S, RAO M V C. On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems[J]. Applied Soft Computing, 2008, 8(1) : 324-336.

二级参考文献4

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部