期刊文献+

弹性需求下路段通行能力的退化状态分析

Capacity Deterioration with Elastic Demand in Road Segment
下载PDF
导出
摘要 基于行程时间对交通需求的影响,建立路段交通流模型,对路段交通流量稳定性及通行能力的退化状态进行分析.在出行者的交通需求具有弹性的情况下,路段行程时间越长,交通需求越低.模型中行程时间由道路上的交通状态决定,车辆行驶过程的计算利用MITSIM模型,通过数值模拟方法分析弹性需求对交通流的稳定性及通行能力的影响.仿真结果表明,在交通需求和路段性能相互作用下,路段交通流量趋向于稳定,非饱和状态下的稳定流量随着交通压力的增加逐渐上升到最大通行能力,而饱和状态下的稳定流量小于最大通行能力且交通压力越高通行能力退化越严重.因此在城市路网规划时,应综合考虑路网中各路段通行能力,避免路段通行能力下降. To explicitly analyze the stability of traffic flow and the capacity drop, the paper develops a link traffic simulation model based on the elastic demand depending on travel time. The traffic demand decreases when the travel time is prolonged under the elastic traffic demand. The travel time lies on the traffic condition of road segment, and the traffic state is evaluated with the MITSIM model. The results show that the link flow will be stable under the natural restrictions of traffic demand and travel time. The unsaturated stable flow will reach the maximum capacity with the traffic pressure boost. The saturated stable flow will below the maximum capacity and the flow volume will decrease with the increase of traffic pressure. To avoid the travel capacity reduction, all the link capacities should be considered in traffic planning for the entire transport network.
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2012年第1期98-104,共7页 Journal of Transportation Systems Engineering and Information Technology
基金 国家重点基础研究发展计划(973)项目(2006CB705503) 国家自然科学基金创新研究群体科学基金(70521001) 国家自然科学基金(70971003)
关键词 交通工程 通行能力 弹性需求 行程时间 稳定流量 traffic engineering capacity elastic demand travel time stable flow
  • 相关文献

参考文献9

  • 1Harald Dyckhoff. A typology of cutting and packing problems European Journal of Operational Research, 1990, 44 (2), 145-159
  • 2Jiang R, Wu Q, Zhu Z.Full velocity difference model for a car-following theory[J].Physical Review E, 2001, 64(1): 17101..
  • 3Bassan S, Ceder A.Analysis of maximum traffic flow and its breakdown on congested freeways[J].Physica A: Statistical Mechanics and its Applications, 2008, 387(16-17): 4349-4366..
  • 4Yang H, Meng Q.Departure time, route choice and congestion toll in a queuing network with elastic demand[J].Transportation Research Part B: Methodological,1998, 32(4): 247-260..
  • 5Garey M R, Johnson D S. Computer and Interactability: A Guide to the Theory of NP-Completeness. W H Freeman and Company,San Francisco, 1979.
  • 6Qi Y.A simulation laboratory for evaluation of dynamic traffic management systems[D].Massachusetts Institute of Technology, 1997..
  • 7Arnott R, De Palma A, Lindsey R.A structural model of peak-period congestion: A traffic bottleneck with elastic demand[J].The American Economic Review,1993, 83(1): 161-179.
  • 8Gazis D C, Herman R, Rothery R W.Nonlinear follow-the-leader models of traffic flow[J].Operations Research, 1961, 9(4): 545-567..
  • 9Subramanian H.Estimation of car-following models[D].Massachusetts Institute of Technology, 1996.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部