期刊文献+

强阻尼粘弹性波动方程的通用吸引子的存在性

Existence of the Universal Attractor for a Strongly Damped Viscoelastic Wave Equation
下载PDF
导出
摘要 设Ω为具有光滑边界的3的有界区域.对给定的ω≥0,考虑了如下具有强阻尼项的粘弹性波动方程:utt-ωΔut-k(0)Δu-∫∞0k'(s)φ(x)Δu(t-s)ds+φ(u)=f,x∈Ω,t≥0;u(x,0)=u0(x,0),ut(x,0)=/tu0(x,0),x∈Ω;u(x,t)=0,x∈Ω,t≥0.对非线性项施加非常一般的临界增长率的条件下,在能量空间X0=D(A12)×L2(Ω)×M1中证明了上述方程的通用吸引子的存在性. Let Ω be a bounded domain in R3 with smooth boundary.Given ω≥0,w e consider the follwing strongly damped viscoelastic wave equation:utt-ωΔut-k(0)Δu-∫∞0k'(s)φ(x)Δu(t-s)ds+φ(u)=f,x∈Ω,t≥0;u(x,0)=u0(x,0),ut(x,0)=/tu0(x,0),x∈Ω;u(x,t)=0,x∈Ω,t≥0. we prove the existence of the universal attractor for the above equation,in the presence of a quite general nonlinearity of critical growth,on the energy space X0=D(A12)×L2(Ω)×M1.
出处 《吉林师范大学学报(自然科学版)》 2012年第1期12-19,共8页 Journal of Jilin Normal University:Natural Science Edition
关键词 强阻尼 粘弹性波动方程 通用吸引子 Strong damping Viscoelastic wave equation Universal attractor
  • 相关文献

参考文献9

  • 1V. Belleri, V. Pata. Attractors for semilinear strongly damped wave equation on R^3[ J ]. Discrete C ontiu. Dynam. Systems,2001,7:719 - 735.
  • 2N. I. Karachalios, N. M. Stavrakakis. Existence of Global Attractor for Semilinear Dissipative Wave Equation on R^N[ J ]. Diffential Equaitions, 1999,157 : 183 - 205.
  • 3A. N. Carvalho,J. W. Cholewa. Attractors for strongly damped wave equation with critical nonlinearities[J]. Pacific J. Math ,2002,207:287 - 310.
  • 4V. Pata, M. Squassina. One the Strongly Damped Wave Equation [ J ]. Commun. Phys. ,2005,253:511 - 533.
  • 5J. Arrieta, A. N. Cavalho, J. K. Hale. A damped hyperbolic equation with critical exponent[ J]. Comm. Partial Differ. Eqs, 1992,17:841 - 866.
  • 6V. Pata. Attractors for a damped wave equation on R^3 with linear memory[J]. Adv. Math. Sci. ,2011,11:505 - 529.
  • 7韩英豪,石奇祥,任怡静.在无界区域上的一类弱耗散半线性双曲型方程的吸引子[J].辽宁师范大学学报(自然科学版),2010,33(3):288-294. 被引量:2
  • 8M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system [ J ]. Commun, Pure Appl. Anal. , 2004,3 : 849 - 881.
  • 9A. N. Carvalho, J. W. Cholewa. Local well posedness forstrongly damped wave equation with critical nonlinearities [ J ]. Bull. Austral. Math. Soc, 2002,66:443 - 463.

二级参考文献6

  • 1RENARDY M,HRUSA W J,NOHEL J A.Mathematical problems in viscolasticity[M].New Yorks Longman Scientific and Technical,John Wiley and Sons,1987:1-273.
  • 2CONTI Monica,PATA Vittorino.Weakly dissipative semilinear equation of viscoelasticity[J].Comm on Pure and Appl Anal,2005,4:705-720.
  • 3PATA Vittorino.Attactions for a damped wave equation on R3 with linear memory[J].Math Meth Appl Sci,2000,23:633-653.
  • 4CONTI M,PATA V,SQUASSINA M.Singular limi of dissipative hyperbolic equations with memory[J].Discrete Contion,Dynarm Systems,2005(suppl):200-208.
  • 5FABRIZAIO M,GENTILI G,REYNOLDS D W.On a rigid linear heat conductor with memory[J].Int J Engng Sci,1998,36:765-782.
  • 6HALE J K.Asymptotic behavior of dissipative systems[M].Amer Math Soc Surveys and Monographs,25,Providence,Rhode Island,1988:63-66.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部