期刊文献+

一类时滞捕食-食饵模型的稳定性与Hopf分支

Stability Analysis and Hopf Bifurcation of a Predator-prey Model with Time Delay
下载PDF
导出
摘要 讨论一类时滞捕食-食饵模型,通过相应的特征方程及特征根的分布,分析滞量的影响,给出该模型的稳定性及Hopf分支存在条件. In this paper,Hopf bifurcation of a predator-prey mode with time delay and harvesting is investigated.The effect of time delay is analysed by the cor responding characteristic equations.It is found that a Hopf bifurcation takes p lace when time delay passes a sequence of certain values.
作者 郭艳芬 李莉
出处 《吉林师范大学学报(自然科学版)》 2012年第1期41-44,共4页 Journal of Jilin Normal University:Natural Science Edition
基金 2010中国博士后科研基金资助项目(20100471043)
关键词 时滞 捕食-食饵 HOPF分支 Time Delay Hopf bifurcation Predator-prey system
  • 相关文献

参考文献7

  • 1马知恩.种群生态学的数学建模与研究[M].安徽教育出版社,1994..
  • 2J. Graunt. Natural and Political Observations Mentioned in a Following Index, and Made upon the Bills by Mortality of John Graunt Citizen of Londen. 1662.
  • 3T. R. Malthus. An Essay on the Principle of Population as It Affects the Future Improvement of Society. London. 1798.
  • 4V. Volterra. Sui Tentative Di Applicazione Delle Mathematiche Alle Seienze Biologiche e Sociali Ann R. Vniv Roma. 1901 (2) :3 - 28.
  • 5V. Voherra. Variazione e Fluttuazini del Numero Individui in Specie Animali Conviventi Mem. Accad Nazionale Lincei 1926 (2) :31 -113.
  • 6郭艳芬.一类具时滞与捕获的捕食与被捕食模型的定性分析(Ⅰ)[J].东北林业大学学报,2008,36(8):81-83. 被引量:3
  • 7郭艳芬.一类具时滞与捕获的捕食与被捕食模型的定性分析(Ⅱ)[J].东北林业大学学报,2009,37(4):81-82. 被引量:3

二级参考文献10

  • 1任洪善.一类一阶双滞量时滞方程零解渐近稳定的代数判据(英文)[J].黑龙江大学自然科学学报,2005,22(2):267-276. 被引量:2
  • 2徐瑞,郝飞龙,陈兰荪.一个具有时滞和阶段结构的捕食-被捕食模型[J].数学物理学报(A辑),2006,26(3):387-395. 被引量:30
  • 3马知恩.种群生态学的数学建模与研究[M].合肥:安徽教育出版社,1994.41-45.
  • 4Chattopadhyay J, Pal S. Viral Infection on Phytoplankton Zooplankton System-A Mathematical Model [ J ]. Ecol Model ,2002,151 ( 1 ) : 15 -28.
  • 5Clark C W. Mathematical Bioeconomics: The Optimal Management of Renewable Resources [ M ]. New York : Wiley, 1990.
  • 6Brauer F, Soudack A C. Coexistence Properties of Some Predator Prey Systems under Constant Rate Harvesting and Stocking[ J ]. J Math Biol,1981 (12) :101 - 114.
  • 7Virtala M. Harvesting a Lichen - Reindeer System in an Uncertain Environment [ J ]. Ecol Model, 1996 (89) :209 - 224.
  • 8Song Yongli, Wei Junjie. Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system[ J ]. J Math Anal Appl,2005(301 ) :1 -21.
  • 9Hale J K. Theory of functional differential equations [ M ]. New York : Spring - Verlag, 1977.
  • 10郭艳芬.一类具时滞与捕获的捕食与被捕食模型的定性分析(Ⅰ)[J].东北林业大学学报,2008,36(8):81-83. 被引量:3

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部