期刊文献+

关于Chuang和Lee的一个定理

A Theorem of Chuang and Lee
下载PDF
导出
摘要 Chuang和Lee通过在半素环中构造一个可数子环的方法证明如下结果:设R是一个半素环,d为R上的一个导子,假设对于任意x∈R,存在一个依赖于x的多项式gx(t)∈Z(t),使得d(x-x2gx(x))=0.那么d(R)[R,R]=0.本短文指出:此定理完全可以通过常规的方法来证明.从而说明上面的定理作为Chuang和Lee方法的应用例子是不适合的. By the method of constructing a countable subring in semiprime rings Chuang and Lee proved the following result : Let R be a semiprime ring with d a derivation of R. Suppose that for each x R, there is a polynomial gx (t) Z [ t ], depending on x such that d ( x - X2gx (x) ) = 0. Then d (R) [ R, R ] = 0. In this short note we show that this theorem can be proved completely by a routine method. It implies that the above theorem as an application of Chuang and Lee method is not suitable.
作者 卢兰 王宇
出处 《吉林师范大学学报(自然科学版)》 2012年第1期82-83,共2页 Journal of Jilin Normal University:Natural Science Edition
关键词 素环 半素环 导子 prime semiprime derivation
  • 相关文献

参考文献3

  • 1C. -L. Chuang, T. - K. Lee, Semiprime rings with prime ideals invariant under derivations [ J ]. Algebra,2006,302 : 305 -312.
  • 2K. I. Beidar, W. S. Matrindale Ⅲ, A. V. Mikhalev Rings with Generalized Identities[ M ]. Marcel Dekker. Inc New York-Basel-Hong-Kong 1996.
  • 3T. k-. Lee, C. Y. Pan, Derivation and co-radical extensions of rings, Publ. Math. Debrecen ,2002,61:75-85.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部