期刊文献+

基于频繁模式树的正负项目集挖掘 被引量:2

The Mining of the Positive and Negative Item Sets Based on Constrain Frequent Tree
下载PDF
导出
摘要 传统的基于支持度—置信度框架的关联规则挖掘方法可能会产生大量不相关的、甚至是误导的关联规则,同时也不能区分正负关联规则。在充分考虑用户感兴趣模式的基础上,采用一阶谓词逻辑作为用户感兴趣的背景知识表示技术,提出了一种基于背景知识的包含正负项目集的频繁模式树,给出了针对正负项目集的约束频繁模式树的构造算法NCFP-Construct,从而提高了关联规则挖掘的效率和针对性,实验结果显示该方法是有效的。 Traditional association rule mining method based on the support-confidence framework may produce a large number of irrelevant,even misleading rules,and can not distinguish the positive association rules from the negative ones.In this paper,on the basis of taking full account of user-interested model,using the first-order predicate logic to describe background knowledge interested by users,a novel constrained frequent pattern tree based on the background knowledge is presented which includes positive and negative item sets,and the construction algorithm NCFP-construct of constraint frequent pattern tree including negative item set is given,so that the pertinence and efficiency of association rules mining result is improved.In the end,the experimental results show that the method is effective.
作者 赵旭俊
出处 《太原科技大学学报》 2012年第1期18-22,共5页 Journal of Taiyuan University of Science and Technology
关键词 约束 频繁模式树 负项目集 关联规则 constrain frequent pattern tree negative item sets association rule
  • 相关文献

参考文献9

  • 1AGRAWAL R,IMIELINSKI T,SWAMI A. Mining association rules between sets of items in large databases[ C]//Proc of lth Int Conf on Management of Data, Washington DC, USA, 1993:207-216.
  • 2刘勇,李建中,高宏.从图数据库中挖掘频繁跳跃模式[J].软件学报,2010,21(10):2477-2493. 被引量:10
  • 3弓秀莲,赵旭俊,张继福.基于FP树的特异关联规则挖掘算法研究[J].太原科技大学学报,2007,28(6):428-432. 被引量:2
  • 4马洋.恒星光谱数据分类规则挖掘系统研究[J].太原科技大学学报,2011,32(4):269-273. 被引量:2
  • 5BRIN S, MOTWANI R, SILVERSTEIN C. Beyond market : Generalizing association rules to correlations [ C ]//Processing of the ACM SIGMOD Conference 1997. New York:ACM Press,1997:265-276.
  • 6SAVASERE A, OMIECINSKI E, NAVATHE S. Mining for Strong Negative Rules for Statistically Dependent Items ~ C ]//Proc of ICDM' 02, Maebashi ,2002:442-449.
  • 7DO TRONG DINH THAC, LAURENT ANNE, TERMIER ALEXANDRE. PGLCM: Efficient parallel mining of closed frequent gradual itemsets [ C ]//IEEE International Conference on Data Mining, Sydney, Australia, 2010 : 138-147.
  • 8ZHOU JIAYI,YU KUNMING, WU BINCHANG. Parallel frequent patters mining algorithm on GPU [ C ]//Conference Proceed- ings-IEEE International Conference on Systems,Man and Cybernetics. 2010:435-440.
  • 9屈百达,陈莉平.一种基于频繁模式树的正负关联规则挖掘算法[J].现代电子技术,2008,31(8):90-93. 被引量:1

二级参考文献31

  • 1张继福,赵旭俊.基于关联规则的恒星光谱数据相关性分析[J].高技术通讯,2006,16(6):575-579. 被引量:1
  • 2张继福,张素兰,胡立华.约束概念格及其构造方法[J].智能系统学报,2006,1(2):31-38. 被引量:14
  • 3胡学钢,陈慧,张玉红,马冯.基于分布式概念格的分类规则挖掘[J].合肥工业大学学报(自然科学版),2007,30(2):132-136. 被引量:2
  • 4Inokuchi A,Washio T,Motoda H.An apriori-based algorithm for mining frequent substructures from graph data.In:Cheng M,Yu PS,Liu B,eds.Proc.of the 4th European Conf.on Principles of Data Mining and Knowledge Discovery.Lyon:Springer-Verlag,2000.13-23.
  • 5Kuramochi M,Karypis G.Frequent subgraph discovery.In:Cercone N,Lin TY,Wu X,eds.Proc.of the 1st IEEE Int'l Conf.on Data Mining.San Jose:IEEE Computer Society,2001.313-320.
  • 6Yan X,Han J.gSpan:Graph-Based substructure pattern mining.In:Aggrawal R,Dittrich K,Ngu AH,eds.Proc.of the 2nd IEEE Int'l Conf.on Data Mining.Maebashi:IEEE Computer Society,2002.721-724.
  • 7Borgelt C,Berhold MR.Mining molecular fragments:Finding relevant substructures of molecules.In:Aggrawal R,Dittrich K,Ngu AH,eds.Proc.of the 2nd IEEE Int'l Conf.on Data Mining.Maebashi:IEEE Computer Society,2002.51-58.
  • 8Huan J,Wang W,Prins J.Efficient mining of frequent subgraphs in the presence of isomorphism.In:Wu X,Tuzhilin A,eds.Proc.of the 3rd IEEE Int'l Conf.Data Mining.Melbourne:IEEE Computer Society,2003.549-552.
  • 9Nijssen S,Kok JN.A quickstart in frequent structure mining can make a difference.In:Kim W,Kohavi R,Gehrke J,DuMouchel W,eds.Proc.of the 10th ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining.Seattle:ACM,2004.647-652.
  • 10Yan X,Han J.Closegraph:Mining closed frequent graph patterns.In:Getoor L,Senator TE,Domingos P,Faloutsos C,eds.Proc.of the 9th ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining.Washington:ACM,2003.286-295.

共引文献11

同被引文献15

  • 1AGRAWAL R, IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large databases [ C ]//Proc of 1 th Int Conf on Management of Data, Washington DC, USA, 1993:207-216.
  • 2JIAWEI Han,JIAN Pei, YIWEN Yin, et al. Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach [ J ]. Data Mining and Knowledge Discovery ,2004,8 (1):53-87.
  • 3EHUD GUDES, SOLOMON EYAL SHIMONY, NATALIA VANETIK. Discovering Frequent Graph Patterns Using Disjoint Paths [ J ]. IEEE Transactions on Knowledge and Data Engineering ,2006,18 ( 11 ) : 1441-1456.
  • 4CLAUDIO LUCCHESE, SALVATORE ORLANDO, RAFFAELE PEREGO. Fast and Memory Ettieient Mining of Frequent ClosedItemsets [ J ]. IEEE Transactions on Knowledge and Data Engineering,2006,18 (1) :21-36.
  • 5DO TRONG. PGLCM: Efficient Parallel Mining of Closed Frequent Gradual Itemsets [ C ]//IEEE International Conference on Data Mining. Australia, Sydney ,2010 : 138-147.
  • 6MESA ALEJANDRO, FEREGRINO-URIBE CLAUDIA, CUMPLIDO REN, et al. A Highly Parallel Algorithm for Frequent Itemset Mining [ C ]//MCPR' 10 Proceeding of the 2nd Mexican conference on pattern recognition. Mexico, Puebla, 2010: 291-300.
  • 7YU KUN MING. Parallel TID-based frequent pattern mining algorithm on a PC Cluster and grid computing system [ J ]. Expert Systems with Applications,2010,37 ( 3 ) :2486-2494.
  • 8WANG EN TZU, CHEN ARBEE. Mining Frequent Itemsets over Distributed Data Streams by Continuously Maintaining a Glob- al Synopsis [ J ]. Data Mining and Knowledge Discovery,2011,23 (2) :252-299.
  • 9FAKHRAHMAD,DASTGHAIBYFARD. An Efficient Frequent Pattern Mining Method and Its Parallelization in Transactional Databases [ J ]. Journal of Information Science and Engineering,2011,27 (2) : 511-525.
  • 10MARGARET H.Dunham.数据挖掘教程[M]北京:清华大学出版社,2008.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部