期刊文献+

图的最大拉普拉斯特征值的上界 被引量:3

The Upper Bound for the Largest Laplacian Eigenvalue of Graphs
下载PDF
导出
摘要 设G=(V,E)是n阶简单连通图,D(G)和A(G)分别表示图的度对角矩阵和邻接矩阵,L(G)=D(G)-A(G)则称为图G的拉普拉斯矩阵。利用图的顶点度和平均二次度结合非负矩阵谱理论给出了图的最大拉普拉斯特征值的新上界,同时给出了达到上界的极图,并且通过举例与已有的上界作了比较,说明在一定程度上优于已有结果。 Let G = (V,E)be a simple and connected graph with n vertices,D(G) and A(G) be the diagonal matrix of vertex degrees and the adjacency matrix of G,respectively. Then the matrix L(G) =D(G) -A(G) is called as the Laplacian matrix of G. In this paper, the spectral theory of nonnegative matrices was used to present a new upper bound on the largest Laplacian Eigenvalue of graphs in terms of the vertex degree and the average 2-degree. Moreover, the extremal graph which achieves the upper bound was determined. Besides, a example is given to illus- trate that the above result is better than the earlier and recent ones in some sense.
作者 乔晓云
出处 《太原科技大学学报》 2012年第1期80-82,共3页 Journal of Taiyuan University of Science and Technology
基金 山西大学商务学院科研基金项目(LX2010036)
关键词 拉普拉斯矩阵 非负矩阵 最大拉普拉斯特征值 graph, laplacian matrix, nonnegative matrix,largest Laplacian eigenvalue
  • 相关文献

参考文献11

  • 1MERRIS R. A Survey of graph Laplacians [ J ]. Linear and Multilinear Algebra, 1995,39 (3) :19-31.
  • 2姜誉,方滨兴,胡铭曾,何仁清.大型ISP网络拓扑多点测量及其特征分析实例[J].软件学报,2005,16(5):846-856. 被引量:38
  • 3LI J S,PAN Y L. De Caens inequality and bounds on the largest Laplacian eigenvalue of a graph[ J]. Linear Algebra Appl, 2001,328 (4) : 153-160.
  • 4ZHANG X D. Two sharp upper bounds for the Laplacian eigenvalues [ J ]. Linear Algebra Appl,2004,376 (3) :207-213.
  • 5邦迪JA 默蒂USR.图论及其应用[M].北京:科学出版社,1984..
  • 6HORN R A,JOHNSON C R. Matrix Analysis [ M ]. New York:Cambridge University Press, 1985.
  • 7PAN Y L. Sharp upper bounds for the Laplacian graph eigenvalues[ J]. Linear Algebra Appl,2002,355 (2) :287-295.
  • 8LIU H Q, LU M, TIAN F. On the Laplacian spectral radius of a graph [ J ]. Linear Algebra App1,2004,376 (4) :135-141.
  • 9张海霞,魏海燕.按树的最大Laplace特征值对树进行排序[J].太原科技大学学报,2009,30(6):523-527. 被引量:2
  • 10张海霞,谢秀梅.关于树的Laplace特征值上界的估计[J].太原科技大学学报,2007,28(3):205-207. 被引量:1

二级参考文献51

  • 1姜誉,方滨兴,胡铭曾.多点测量Internet路由器级拓扑[J].电信科学,2004,20(9):12-17. 被引量:3
  • 2张福基 张知难 等.关于图的最大特征根的若干定理[J].新疆大学学报:自然科学版,1984,3:84-90.
  • 3CVETKOVIE D M, DOOB M ,SACHS H. Spectra of Graphs-Theory and Applications[ M]. New York:Academic Press, 1992.
  • 4GUO Ji-ming. On the second largest Laplacian eigenvalue of trees [ J ]. Linear Algebra Appl. ,2005,404:251-261.
  • 5XU GUANG HUI. On the spectral radius of trees with perfect matchings [ M ]. Singapore : Combinatorics and Graph Theory, World Scientific, Singapore, 1997.
  • 6GUO JIMING. On the Laplaeian spectral radius of trees with fixed diameter [ J ]. Linear Algebra Appl. ,2006,419 : 618-629.
  • 7LIN WEN SHUI, GUO XIAOFENG: Ordering trees by their largest Eigenvalues [ J ]. Linear Algebra Appl. ,2006,418:450-456.
  • 8ANDERSON W N, MORLEY T D. Eigenvalues of the Laplacian of a graph [ J ]. Linear Muhilinear Algebra, 1985,18:141-145.
  • 9Floyd S, Kohler E. Internet research needs better models. ACM SIGCOMM Computer Communication Review, 2003,33(1)29-34.
  • 10Jiang Y, Fang BX, Hu MZ, Zhang HL, Yun XC. A distributed architecture for Internet router level topology discovering systems.In: Fan PZ, Shen H, eds. Proc. of the 4th Int'l Conf. on Parallel and Distributed Computing, Applications and Technologies(PDCAT'2003). New York: IEEE Press, 2003.47-51.

共引文献77

同被引文献8

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部