期刊文献+

半限制空间内的RFID可能性k-近邻查询技术 被引量:1

RFID Probable k-NN Query Techniques in the Semi-Constraint Space
下载PDF
导出
摘要 作为一种监控与跟踪车流和人类活动等的潜在技术,RFID(radio frequency identification)已经在数据库领域得到了很大关注.RFID监控对象上的k-近邻查询是一种最重要的时空查询,能够用来支持有价值的高层信息分析.但是,不同于没有限制的空间和基于限制的空间,RFID监控场景通常被设置在一种半限制的空间内,需要新的存储和距离计算策略.此外,监控对象位置的不确定性对查询语义和处理方法提出了挑战.提出了半限制空间的概念,并且分析了基于RFID的半限制空间的模型.基于半限制空间,在给定一个动态查询点的基础上,提出了3种模型和算法以有效地估计可能性k-近邻的查询结果,并采用一些特殊的索引技术加快查询的速度.实验对提出算法的效率和准确性进行了评估,表明了相关方法的有效性. As a promising technology for monitoring and tracing the vehicle flows and human activities, radio frequency identification (RFID) has received much attention in database community, k-nearest neighbor (k-NN) query over RFID monitored objects is one of the most important spatio-temporal queries used to support valuableinformation analysis. Different from the constraint-free space and constraint-based space, however, RFID monitoring scenario is usually merged into a semi-constraint space, which desires new data storage and distanceevaluation strategies. Furthermore, the uncertainty of the monitored object locations challenges the query semantics and processing methods. In this paper, the concept of semi-constraint space is proposed, and the RFID-based semi-constraint space model is analyzed. Based on the semi-constraint space, three models and algorithms areproposed to estimate the probable k-NN results given a dynamic query point. Some special indexing techniques are adopted to speed the query. The experiment evaluates the efficiency and accuracy of the proposed algorithms and proves the effectiveness of relative methods.
出处 《软件学报》 EI CSCD 北大核心 2012年第3期565-581,共17页 Journal of Software
基金 国家自然科学基金(61003058 60933001) 国家重点基础研究发展计划(973)(2012CB316201) 中央高校基本科研业务费专项资金(N110404006)
关键词 RFID K-近邻 移动对象 半限制空间 不确定 连续查询 RFID k-NN moving object semi-constraint space uncertain continuous query
  • 相关文献

参考文献22

  • 1Wu W,Tan KL.iSEE:Efficient continuous k-nearest-neighbor monitoring over moving objects.In:Proc.of the 19th Int’l Conf.onScientific and Statistical Database Management.Banff:IEEE Computer Society,2007.36.[doi:10.1109/SSDBM.2007.37].
  • 2Cheng R,Kalashnikov DV,Prabhakar S.Evaluating probabilistic queries over imprecise data.In:Halevy AY,et al.,eds.Proc.ofthe 2003 ACM SIGMOD Int’l Conf.on Management of Data.San Diego:ACM Press,2003.551-562.[doi:10.1145/872757.872823].
  • 3Kriegel HP,Kunath P,Renz M.Probabilistic nearest-neighbor query on uncertain objects.In:Proc.of the 12th Int’l Conf.onDatabase Systems for Advanced Applications.LNCS 4443,Bongkok:Springer-Verlag,2007.337-348.[doi:10.1007/978-3-540-71703-4_30].
  • 4Cheng R,Chen JC,Mokbel M,Chow CY.Probabilistic verifiers:Evaluating constrained nearest-neighbor queries over uncertaindata.In:Proc.of the 24th Int’l Conf.on Data Engineering.Cancun:IEEE Computer Society,2008.973-982.[doi:10.1109/ICDE.2008.4497506].
  • 5Welbourne E,Khoussainova N,Letchner J,Li Y,Balazinska M,Borriello G,Suciu D.Cascadia:A system for specifying,detecting,and managing RFID events.In:Grunwald D,et al.,eds.Proc.of the Mobile Systems,Applications,and Services.Breckenridge:ACM Press,2008.281-294.[doi:10.1145/1378600.1378631].
  • 6RéC,Letchner J,Balazinksa M,Suciu D.Event queries on correlated probabilistic streams.In:Wang JTL,ed.Proc.of the 2008ACM SIGMOD Int’l Conf.on Management of Data.Vancouver:ACM Press,2008.715-728.[doi:10.1145/1376616.1376688].
  • 7Tran T,Sutton C,Cocci R,Nie YM,Diao YL,Shenoy P.Probabilistic inference over RFID streams in mobile environments.In:Proc.of the 25th Int’l Conf.on Data Engineering.Shanghai:IEEE Computer Society.1096-1107.[doi:10.1109/ICDE.2009.33].
  • 8Tao YF,Papadias D,Shen QM.Continuous nearest neighbor search.In:Proc.of the 28th Int’l Conf.on Very Large Data Bases.Hong Kong:Morgan Kaufmann Publishers,2002.287-298.
  • 9Nutanong S,Zhang R,Tanin E,Kulik L.The V*Diagram:A query-dependent approach to moving KNN queries.PVLDB,2008,1(1):1095-1106.[doi:10.1145/1453856.1453973].
  • 10Cho HJ,Chung CW.An efficient and scalable approach to CNN queries in a road network.In:Bohm K,et al.,eds.Proc.of the 31stInt’l Conf.on Very Large Data Basesn.Trondheim:ACM Press,2005.865-876.

同被引文献13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部