期刊文献+

一种基于语义吸引的节点规模估计方法

Network Size Estimation Method Based Semantic Attraction
下载PDF
导出
摘要 节点规模是各种分布式应用的基础信息,节点波动的大规模网络环境要求节点规模估计方法具有较高的估计精度和较强的鲁棒性,已有的节点规模估计方法多侧重于某个方面的优化而未能充分权衡计算精度和鲁棒性.提出一种基于语义吸引的节点规模估计方法——SEBSA(a network size estimation method based semanticattraction).SEBSA将每个节点标识所对应的实数区间上的哈希值作为语义信息,节点通过与哈希值临近的节点周期性地交换哈希空间上的邻居信息,以快速吸引与自己哈希值最近的一组节点,测量该组节点哈希值的平均间距以估计节点规模.理论分析和实验结果表明,相对于已有方法,SEBSA在节点频繁波动的网络环境中仍然能够快速地提供准确的节点规模信息. Network size is the fundamental information of the distributed applications. Network size estimation methods must feature both high accuracy and adequate robustness in order to adapt to a large environment with a high node chum. Considering the fact that the existing network size estimation methods mainly focus on single optimization objective and fail to ensure accuracy and robustness simultaneously, a network size estimation method based semantic attraction--SEBSA is proposed in this paper, As the semantic information in SEBSA, hash values are hashed in real intervals by the peers' identifies. The peers with adjacent hash values in SEBSA periodically exchange hash neighbors to attract the most adjacent peers in a hash space quickly. Meanwhile, every peer computes the average spacing among hash values of the hash neighbors to estimate network size. Theoretic analysis and experimental results reveal that compared with existing size estimation methods, SEBSA can provide accurate size estimation information quickly even in continually fluctuating network environment.
出处 《软件学报》 EI CSCD 北大核心 2012年第3期662-676,共15页 Journal of Software
基金 国家自然科学基金(60873215) 国家重点基础研究发展计划(973)(2011CB302601) 湖南省自然科学杰出青年基金(S2010J5050) 高等学校博士学科点专项科研基金(200899980003)
关键词 网络规模 规模估计 语义吸引 聚集值估计 P2P network size size estimation semantic attraction aggregation estimation P2P
  • 相关文献

参考文献16

  • 1Rowstron A,Druschel P.Pastry:Scalable,decentralied object location and routing for large-scale peer-to-peer systems.In:Proc.of the IFIP/ACM Int'l Conf.on Distributed Systems Platforms.2001.329-350.[doi:10.1007/3-540-45518-3-18].
  • 2Stoica I,Morris R,Karger D,Kaashoek MF,Balakrishnan H.Chord:A scalable peer-to-peer lookup service for Internet applications.In:Proc.of the2001SIGCOMM Conf.New York:ACM Press,2001,31(4):149-160.[doi:10.1145/383059.383071].
  • 3Ganesh AJ,Kermarrec AM,MassouliéL.Peer-to-Peer membership management for gossip-based protocols.IEEE Trans.on Computers,2003,52(2):139-149.[doi:10.1109/TC.2003.1176982].
  • 4Baldoni R,Beraldi R,Quema V,Querzoni L,T-Piergiovanni S.TERA:Topic-Based event routing for peer-to-peer architectures.In:Proc.of the2007Inaugural Int'l Conf.on Distributed Event-Based Systems.New York:ACM Press,2007.[doi:10.1145/1266894.1266898].
  • 5Jelasity M,Montresor A.Epidemic-Style proactive aggregation in large overlay networks.In:Proc.of the Int'l Conf.on Distributed Computing Systems.2004.102-109.[doi:10.1109/ICDCS.2004.1281573].
  • 6Bawa M,G-Molina H,Gionis A,Motwani R.Estimating aggregates on a peer-to-peer network.Technical Report,Technical Department of Computer Science,Stanford University,2003.
  • 7Flajolet P,Martin GN.Probabilistic counting algorithms for data base applications.Journal of Computer and System Sciences,1985,31(2):182-209.[doi:10.1016/0022-0000(85)90041-8].
  • 8Kennedy O,Koch C,Demers A.Dynamic approaches to in-network aggregation.In:Proc.of the IEEE25th Int'l Conf.on Data Engineering.2009.1331-1334.[doi:10.1109/ICDE.2009.233].
  • 9MassouliéL,Le Merrer E,Kermarrec AM,Ganesh A.Peer counting and sampling in overlay networks:Random walk methods.In:Proc.of the25th Annual ACM Symp.on Principles of Distributed Computing.ACM Press,2006.123-132.[doi:10.1145/1146381.1146402].
  • 10Kostoulas D,Psaltoulis D,Gupta I,Birman K,Demers A.Decentralized schemes for size estimation in large and dynamic groups.In:Proc.of the4th IEEE Int'l Symp.on Network Computing and Applications.2005.41-48.[doi:10.1109/NCA.2005.15].

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部