期刊文献+

基于多分类器的房地产客户分类

Classification of Real Estate Client Based on Multiple Class Selectors
原文传递
导出
摘要 利用数据挖掘中分类的技术,根据房地产客户的信息,对客户购买力、购买欲进行评估,根据客户是否会购买,将其分为两类:重点客户和一般客户。从损失成本和辨别能力方面考虑,构建了一个组合分类器模型。使用Weka软件,利用多个公司的客户历史数据,与决策树、神经网络、支持向量机以及贝叶斯网络的分类性能做了比较,发现该组合分类器在稳定性、正确率方面优于其他分类器。 The classification technology is utilized, evaluating the purchasing, power and the desire to buy of client, according to the basic information of client. Clients are classed into important client and general client. A multiple class selectors are constructed, considering the lost cost and resolving ability. Using the data of some companies,Weka is used to compare the performances of this class selector with decision tree, BP, support vector machine and Bayesian network. It's found that a high accurate level and stability can be achieved by this class selector.
出处 《世界科技研究与发展》 CSCD 2012年第1期108-110,158,共4页 World Sci-Tech R&D
基金 重庆市自然科学基金(CSTC 2008BB2191)资助项目
关键词 房地产客户分类 损失成本 分类辨别能力 组合分类器 real estate client classification lost cost resolving ability multiple class selectors
  • 相关文献

参考文献12

二级参考文献32

  • 1赵晓煜,黄小原.基于数据挖掘的客户价值预测方法[J].东北大学学报(自然科学版),2006,27(12):1393-1396. 被引量:7
  • 2程泽凯 ,林士敏 .文本分类器准确性评估方法[J].情报学报,2004,23(5):631-636. 被引量:13
  • 3秦锋,杨波,程泽凯.分类器性能评价标准研究[J].计算机技术与发展,2006,16(10):85-88. 被引量:27
  • 4余瑞康,施润身.聚类思想在贝叶斯算法中的应用[J].计算机工程与应用,2006,42(28):159-160. 被引量:10
  • 5范洁,常晓航,杨岳湘.基于属性相关性的决策树规则生成算法[J].计算机仿真,2006,23(12):90-92. 被引量:9
  • 6Hanjiawei, Kamber M. Data Mining Concepts and Techniques [M]. [s.l. ] :Morgan Kaufmann publishers,2000.
  • 7Schapire R E,Singer Y. BoostTexter: A boosting- based system for text categorization[ J ]. Machine Learning, 2000,39 (2 - 3) : 135 - 168.
  • 8Dietterich T G, Lathrop R H, lxrzano - Perez T. Solving the multi - instance problem with axis- parallel rectangles[J]. Artificial Intelligence, 1997,89 ( 1 - 2) : 31 - 71.
  • 9Zhou Z H, Zhang M L. Multi - instance multi - label learning with application to scene classification[M]//In Advances in Neural Information Processing Systems 19. Cambridge, MA: MIT Press,2007 : 1609 - 1616.
  • 10ZhangM L, ZhouZH. M3MIML: A maximum margin method for multi - instance multi - label learning[ C]//In: Proceedings of the 8th IEEE International Conference on Data Mining (ICDM' 08). Pisa, Italy: [ s. n. ], 2008:688 - 697.

共引文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部